
The Python Papers 5(2): 1

 - 1 -

Using Python to Program LEGO MINDSTORMS® Robots: The

PyNXC Project

Brian S. Blais

Bryant University, Smithfield RI

bblais@bryant.edu

Abstract

LEGO MINDSTORMS® NXT (Lego Group, 2006) is a perfect platform for

introducing programming concepts, and is generally targeted toward children from

age 8-14. The language which ships with the MINDSTORMS®, called NXTg, is a

graphical language based on LabVIEW (Jeff Kodosky, 2010). Although there is

much value in graphical languages, such as LabVIEW, a text-based alternative can

be targeted at an older audiences and serve as part of a more general introduction to

modern computing. Other languages, such as NXC (Not Exactly C) (Hansen, 2010)

and PbLua (Hempel, 2010), fit this description. Here we introduce PyNXC, a subset

of the Python language which can be used to program the NXT MINDSTORMS®.

We present results using PyNXC, comparisons with other languages, and some

challenges and future possible extensions.

1. Introduction

LEGO MINDSTORMS® is a robotics platform where the robot structure is built

with LEGOs® and the programs are entered on a computer and downloaded via a

USB connection. The robot is then disconnected and run autonomously. The choice

of languages fall into two categories: graphical and text-based. Because the product

is marketed primarily towards the elementary and middle school, through such

events as the FIRST LEGO League and Robotics Park(Kelly and Daudelin, 2008),

the graphical languages are the ones that are officially supported by the LEGO

company. These include RobotLab and NXT-G. There are third-party text-based

languages based on well-known programming languages like C, Java, and Lua.

These include NXC, Robot C, LeJOS, PbLua, and others.(Hassenplug, Steve, 2008)

NXC is the most widely used unofficial language. The only solutions for

programming robots with Python either use the bluetooth interface (pynxt, 2010),

where the Python interpreter is not running on the robot but on an external

computer, or don’t support LEGO MINDSTORMS® (Blank et. al, 2006; myro,

2010).

When starting the PyNXC project (Blais, 2010), my goal was to find a fully

autonomous solution or the LEGO MINDSTORMS® using Python. However, the

robot’s firmware places limits on any language that one uses, especially limits on

memory size and dynamic allocation, such as limiting the dynamic allocation to

arrays. These limitations can be overcome with a custom firmware, like the Java

solution LeJOS, but PyNXC aims at using the firmware which comes with the NXT,

so that it can work “out of the box”. Instead of writing NXT bytecode directly, the

The Python Papers 5(2): 1

 - 2 -

PyNXC project, as the name suggests, translates Python code into NXC code and

then uses the NXC compiler to download the program to the robot.

1.1. NXC

NXC (Not Exactly C) is the most widely used third-party, free, library for

programming the NXT Robots. It uses C-like syntax, but is not a full C

implementation due to the limitations of the robot firmware.

A simple program, out of the NXC Tutorial (Benedettelli, 2007) is the following

program which moves forward until the touch-sensor (on NXT port 1) is pressed:

#include "NXCDefs.h"
task main()
{
 SetSensor(IN_1,SENSOR_TOUCH);
 OnFwd(OUT_AC, 75);
 until (SENSOR_1 == 1);
 Off(OUT_AC);
}

The sensor is defined to be a touch sensor (which will return a 1/0 value for

pressed/not pressed), and the motors on ports A and C are set to 75% power. The

robot rolls forward until the sensor on port 1 is triggered. At this point the motors

are turned off. For those used to Python, the extra syntax (braces, semicolons, lack

of indented code blocks, etc...) is seen as visual noise, and obstructs the later

understanding of the code.

1.2. PyNXC

A python-to-NXC converter is an ill-defined concept. NXC is statically typed while

python is dynamically typed. Python is much more general than NXC, and does not

have the same data structures. NXC has structs, arrays, and mutices while python

has classes, lists, and a huge standard library. At first it would seem that this project

would have the same goals as other Python-to-C converters, such as Cython

(Cython, 2010) and Shedskin (Dufour, 2010), but the robot hardware changes the

goals. In Shedskin, for example, the conversion attempts to infer the data type,

such as int or float. When programming robots, the memory requirements are such

that one is always concerned with the data size, so the programmer chooses byte,

short, or int as they need to for optimization. These types cannot, even in principle,

be inferred. Cython’s goal includes “compiling regular Python code and (most of)

the normal Python test suite” (Cython, 2010). Optimizations needed for the robots

may require some non-python syntax to be included in the PyNXC project, and will

certainly severely limit the scope of the python code supported.

The reason I am writing this project is so that I can use Python syntax to program

robots, so that in my courses (where there are both robot and non-robot

programming assignments) I can use one language. Pedagogically speaking, this is

a critical goal especially for beginning programmers where even slight differences in

the syntax of two languages causes problems.

2. Example Programs

In this section I include a number of simple examples, to give the reader a flavor of

PyNXC. I examine some of the non

look at some limitations and future directions.

2.1. Examples

The first example is a translation of the NXC code above.

def main():
 DefineSensors(TOUCH
 OnFwd(OUT_AC, 75)
 while SensorVal(
 pass
 Off(OUT_AC)

Here, the difference in the program is not substantial, but the program is a bit

cleaner than the NXC version. There are no “until” statements in Python, so a while

loop is used. There are no

boilerplate code is written into the translator.

A more complex example is the line

this task more complex is that the robot has to determine, on its

the wall (using the included ultrasonic range sensor), the location of the barrier

(either right or left), and the location of the line on the ground (using the light sensor

included in the NXT kit).

Figure 1. Line-finding task for

turn away from the barrier, move to the dark line on the ground, and stop. The robot

does not know on which side the barrier will be, the right or the left. Shown is the

barrier on the right with the

possible, with the barrier on the left and the line on the right.

The code for solving the line

The Python Papers

- 3 -

Example Programs

In this section I include a number of simple examples, to give the reader a flavor of

mine some of the non-pythonic syntax included, for optimization, and

look at some limitations and future directions.

The first example is a translation of the NXC code above.

TOUCH,None,None,None)
)
(1) != 1:

Here, the difference in the program is not substantial, but the program is a bit

cleaner than the NXC version. There are no “until” statements in Python, so a while

are no #include preprocessor instructions in Python, so the

boilerplate code is written into the translator.

A more complex example is the line-finding task shown in Figure 1. What makes

this task more complex is that the robot has to determine, on its own, the distance to

the wall (using the included ultrasonic range sensor), the location of the barrier

(either right or left), and the location of the line on the ground (using the light sensor

included in the NXT kit).

finding task for the Robot. The robot needs to go forward to the wall,

turn away from the barrier, move to the dark line on the ground, and stop. The robot

does not know on which side the barrier will be, the right or the left. Shown is the

barrier on the right with the dark line on the left. The reverse configuration is also

possible, with the barrier on the left and the line on the right.

The code for solving the line-finding task is the following:

The Python Papers 5(2): 1

In this section I include a number of simple examples, to give the reader a flavor of

pythonic syntax included, for optimization, and

Here, the difference in the program is not substantial, but the program is a bit

cleaner than the NXC version. There are no “until” statements in Python, so a while-

preprocessor instructions in Python, so the

finding task shown in Figure 1. What makes

own, the distance to

the wall (using the included ultrasonic range sensor), the location of the barrier

(either right or left), and the location of the line on the ground (using the light sensor

The robot needs to go forward to the wall,

turn away from the barrier, move to the dark line on the ground, and stop. The robot

does not know on which side the barrier will be, the right or the left. Shown is the

dark line on the left. The reverse configuration is also

The Python Papers 5(2): 1

 - 4 -

distance=0
right_wall=0
stop_check=0

def Turn(ang):
 if ang>0: # CW
 OnFwd(OUT_C,80)
 OnRev(OUT_A,80)
 Wait(230*abs(ang)/90) # with power 80
 else: # CCW
 OnFwd(OUT_A,80)
 OnRev(OUT_C,80)
 Wait(280*abs(ang)/90) # with power 80

 Off(OUT_AC)

def GoToLine():
 OnFwd(OUT_A,100)
 OnFwd(OUT_C,100)

 # go to dark line
 while SensorVal(2)>30:
 pass

 Off(OUT_AC)

def task_CheckRight():
 RotateMotor(OUT_B,100,90) # turn the eyes to look right

 while not stop_check:
 if SensorVal(4)<50: # object is close on the right
 right_wall=1 # ...so it must be a barrier
 stop_check=1

 RotateMotor(OUT_B,-100,90)

def task_Forward():
 RotateMotor(OUT_AC,100,distance*15)
 stop_check=1

 if right_wall:
 Turn(-90)
 else:
 Turn(90)

 GoToLine()

def main():

 DefineSensors(SOUND,LIGHT,None,EYES)

 # wait for a clap
 while SensorVal(1)<50:
 pass

 distance=SensorVal(4) # distance to the wall, in cm
 StartTask(task_Forward)
 StartTask(task_CheckRight)

I will explain the general flow of the program here, and along the way highlight

some of the aspects of the Python to NXC translation. In every program there is a

function called main which gets called when the robot is told to run the program..

The Python Papers 5(2): 1

 - 5 -

The NXT is a multitasking platform, where all of the initial tasks are started in the

main program and are run concurrently. In NXC, tasks are denoted with a task

keyword. In PyNXC,

def task_foo():
 pass

is translated to NXC code:
task task_foo(){
}

In this way, the name of a function can determine what kind of NXC function is

involved. This convention works for functions declared as inline (e.g named

inline_foo) and subroutines (e.g. named sub_foo).

The two tasks are started concurrently, and use global variables distance,

right_wall, and stop_check to communicate information. There are mutex

variables in NXC which can be used to avoid collisions when tasks need to write

information to the same place. Variables that are not declared as a certain type as

assumed to be of time int. In this way, some of the dynamism of Python is retained,

and the boilerplate code of type declarations is largely avoided in simple programs.

The task task_Forward rolls forward, sets the stop_check flag (to signal to the

other task to end, and then turns right or left depending on the value of the

right_wall flag set by the other task. Functions work just as in Python, and all of

the API calls of NXC are available.

Many more examples can be found on the project website,

http://code.google.com/p/pynxc/, including a translation of all of the programs in the

NXC Tutorial.

2.2. Other Capabilities

The following is a miscellaneous list of the way PyNXC translates to particular

NXC syntax elements.

• A DEFINE keyword is introduced to do preprocessor search-and-replace. It is

equivalent to the #DEFINE in NXC.

DEFINE turn_around=OnRev(OUT_B, 75); Wait(3400); OnFwd(OUT_AB, 75);

def main():
 OnFwd(OUT_AB, 75)
 Wait(1000)
 turn_around
 Wait(2000)
 Off(OUT_AB)

• NXC structs are implemented as Python classes, subclassing Struct.
class MyStruct(Struct):
 x=Byte(5)
 y=Word(6)
 s=String('hello')

m=MyStruct()

The Python Papers 5(2): 1

 - 6 -

m2=MyStruct(x=6,y=7,s='this')

• Typedefs are implemented just like struct, by the Python subclassing syntax.
class MyByte(Byte):
 pass

• For-loops work with limited forms range, not on lists (which don’t exist in NXC)

or arrays (yet).
i=Byte()
s=String()

for i in range(256):
 s=NumToStr(i)

for i in range(1,12):
 s=NumToStr(i)

for i in range(1,12,3):
 s=NumToStr(i)

2.3. Limitations

Recent versions of NXC (version b36) include floating-point support, which PyNXC

does not currently support. Some new functions on arrays are also not supported

yet, but should be shortly. Clearly this project has all of the limitations that NXC

has, but at the same time it also automatically improves when more API calls are

included in NXC.

3. Conclusions

Ideally, it would be nice to have a Python virtual machine working the NXT

platform, like LeJOS does with the Java virtual machine. This would automatically

lead to a huge flexibility increase in the use of Python for the NXT. However, given

the memory limitations of the NXT, there would probably be some necessary

sacrifice of the power of Python to be practical. The PyNXC project fills the

middle-ground, where one gets at least some of the benefits of programming in

Python on the NXT platform, with a very small memory footprint of NXC. It works

“out of the box” with the firmware which ships with the NXT, and can be used as a

spring-board for novice programmers to learn python and apply it to more advanced

problems.

4. References

Benedettelli, Daniele (2007). “Programming LEGO NXT Robots using NXC”.

[Online] Available at http://bricxcc.sourceforge.net/nbc/nxcdoc/NXC_tutorial.pdf.

Retrieved 2010-02-26.

The Python Papers 5(2): 1

 - 7 -

Blais, Brian (2010). “pynxc: A Python to NXC Converter for Programming LEGO

Mindstorms Robots”. [Online] Available at http://code.google.com/p/pynxc/.

Retrieved 2010-02-26.

Blank, D.S., Kumar, D., Meeden, L., and Yanco, H. (2006) “The Pyro toolkit for AI

and robotics”. In AI Magazine Volume 27, Number 1.

Cython (2010). “C-extensions for Python”. [Online] Available at

http://www.cython.org/. Retrieved 2010-02-26.

Dufour, Mark (2010). “shedskin: An experimental (restricted) Python-to-C++

compiler”. [Online] Available at http://code.google.com/p/shedskin/. Retrieved

2010-02-26.

Hansen, John (2010). “Welcome to Next Byte Codes and Not eXactly C”. [Online]

Available at http://bricxcc.sourceforge.net/nbc/. Retrieved 2010-02-26.

Hassenplug, Steve (2008). “NXT Programming Software” [Online] Available at

http://www.teamhassenplug.org/NXT/NXTSoftware.html. Retrieved 2010-02-26.

Hempel, Ralph (2010). “PbLua Home Page” [Online] Available at

http://www.hempeldesigngroup.com/lego/pbLua/index.html Retrieved 2010-02-26.

Kelly, James and Daudelin, Jonathan (2008). “First LEGO League: The Unofficial

Guide”. No Starch Press.

Kodosky, Jeff (2010). “Is LabVIEW a general purpose programming language?”.

[Online] Available at http://zone.ni.com/devzone/cda/tut/p/id/5313. Retrieved 2010-

02-26.

Lego Group (January 4, 2006). "What's NXT? LEGO Group Unveils LEGO

MINDSTORMS NXT Robotics Toolset at Consumer Electronics Show". Press

release. Retrieved 2010-02-26.

Myro Development. [Online] Available at http://wiki.roboteducation.

org/Myro_Development. Retrieved 2010-02-26.

PyNXT Project. [Online] Available at http://pynxt.sourceforge.net/ Retrieved 2010-

02-26.

