Document Type

Article

Comments

Published by MIT Press in Neural Computation Volume 10, Issue 7, pages 1797-1813.
Bryant University users may access this article here.

Copyright of Neural Computation is the property of MIT Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Publication Source

Neural Computation

Abstract

We study several statistically and biologically motivated learning rules using the same visual environment: one made up of natural scenes and the same single-cell neuronal architecture. This allows us to concentrate on the feature extraction and neuronal coding properties of these rules. Included in these rules are kurtosis and skewness maximization, the quadratic form of the Bienenstock-Cooper-Munro (BCM) learning rule, and single-cell independent component analysis. Using a structure removal method, we demonstrate that receptive fields developed using these rules depend on a small portion of the distribution. We find that the quadratic form of the BCM rule behaves in a manner similar to a kurtosis maximization rule when the distribution contains kurtotic directions, although the BCM modification equations are computationally simpler.

Share

COinS