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ABSTRACT 
One of the key functions of a property and casualty (P&C) insurance company is loss 

reserving, which calculates how much money the company should retain in order to pay out 

future claims. Most P&C insurance companies use non-stochastic (non-random) methods to 

estimate these future liabilities. However, future loss data can also be projected using 

generalized linear models (GLMs) and stochastic simulation. Two simulation methods that 

will be the focus of this project are: bootstrapping methodology, which resamples the original 

loss data (creating pseudo-data in the process) and fits the GLM parameters based on the new 

data to estimate the sampling distribution of the reserve estimates; and asymptotic theory, 

which resamples only the GLM parameters (fitted from an original set of data) from a 

multivariate normal distribution to estimate the sampling distribution of the reserve estimates. 

Using Excel, R, and SAS software, the copulas of the GLM parameter estimates from the 

stochastic methods will be compared to the copula from a multivariate normal distribution. 

Ultimately, the Value at Risk (VaR) and Tail Value at Risk (TVaR) results from each 

method’s sampling distribution will be compared to each other, with the goal of showing that 

the two methods produce significantly different reserve estimates and risk capital estimates at 

the low end of the reserve distribution. This would answer the question as to whether the 

asymptotic theory procedure sufficiently approximates real-world scenarios. 
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INTRODUCTION 
Property and casualty (P&C) insurance is one of the major forms of insurance available in 

today’s market (the others being life insurance and health insurance). However, P&C 

insurance covers different risks than the other two: this type of risk transfer protects against 

losses faced by homeowners and business owners. Exposures protected include automobiles, 

houses, buildings, valuable items, and different types of liabilities.  

The two major tasks faced by actuaries who work in P&C insurance companies are 

ratemaking and loss reserving. Ratemaking is the pricing of insurance policies, which is the 

process of establishing the amount of premium to charge each customer in order to adequately 

cover losses, expenses, and a profit load (on a pooled risk basis). Loss reserving is the 

estimation of how much money the insurer will need to hold to cover future reported losses. 

The process of loss reserving involves using the upper half of the loss reserving triangle, 

which consists of loss data previously reported to the company (shaded light gray in the 

exhibit below) to project loss amounts in the lower half of the triangle (shaded dark gray in 

the exhibit below). Insurance companies strive to estimate reserve amounts as accurately as 

possible because over-reserving would hinder the companies’ use of the capital for investing, 

while under-reserving would weaken their capacity to withstand catastrophic events (due to a 

lower amount of risk capital held). Most insurance companies do not utilize stochastic 

methodologies to predict their loss reserves; rather, they use point estimates, which do not 

quantify uncertainty like stochastic models do. Some of the popular methods used, as outlined 

by Friedland (2010), include the chain ladder technique and the Bornhuetter-Ferguson 

method. While there is currently no industry consensus on the use of stochastic models, these 

models do provide quantitative measures that can assist company management in determining 

efficient levels of risk capital for specific lines of business, or for the company as a whole. 
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Figure 1 – Sample Loss Development Triangle 

LITERATURE REVIEW 
McCullagh and Nelder (1989) wrote the foundational book on generalized linear models, as it 

describes such topics as the origins of GLMs and how to calculate residuals. The paper 

written by Anderson et al. (2007) acts a simplified reference guide to the basic definitions of 

each part of a GLM, in addition to providing illustrative examples on how to analyze error 

structures, which are built into the GLMs themselves. Hartl’s conference presentation (2013) 

also provides an illustrative example of some of the principles described in the Anderson 

paper.  

While Barnett and Zehnwirth (2007) describe a lognormal model (not a GLM), this is still an 

influential paper for the field of stochastic reserving for P&C development triangles. The 

authors demonstrate, with statistical goodness-of-fit tests, why traditional loss development 

methods are not a good model for most data sets.  

Davison and Hinkley (1997) break down the process of applying bootstrapping to GLMs with 

concrete real-world examples. Pinhiero, Andrade e Silva, and Centeno (2003) explore 

bootstrapping in an applied manner with the specific insurance example of loss reserving. 

England and Verrall (2006) reinforce the general concept of bootstrapping, with its benefits 

and limitations, but explain other necessary material. The chain-ladder technique is explored 

and contrasted against stochastic reserving practices. Wüthrich and Merz (2008) also detail 

how to apply GLMs and bootstrapping practices to insurance examples. They touch upon the 

GLMs from the exponential dispersion family and parametric bootstrapping. They also detail 
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a general claim-handling process for non-life insurance claims, which establishes a mind-

frame regarding how claims are documented and processed. Hartl (2010) provides a specific 

framework for this project with his paper on bootstrapping, GLMs, and deviance residuals. 

Asymptotic theory is explored in a traditional statistical manner in the book by Lehmann and 

Casella (1998). Alai and Wüthrich (2009) explain asymptotic theory in a more applied, 

actuarial context, in which, as the number of data points increases, the difference between the 

simulated parameter estimates and the “true” parameter estimates becomes approximately 

normally distributed, with mean zero and a Fisher information matrix describing the variance-

covariance structure.  

According to the asymptotic property of maximum likelihood estimation (for large data 

samples), the parameters estimates in the linear predictor are bias-free. However, this does not 

mean that the exponential of the linear predictor is also bias-free. Kosmidis (2014) explains 

how bias appears and how to adjust for cases of its existence in small data samples.  

Risk capital and the process of risk modeling are well-defined in the P&C insurance industry. 

Insurers must have a method to calculate how much extra capital they should retain in case of 

a rare event. Rech et al. (2012) provides a comprehensive guide to risk modeling in the P&C 

industry. 

METHODOLOGY – TECHNICAL NOTES 
The GLM that will be used in this study is an exponential model (with a logarithm link 

function) and an over-dispersed Poisson variance structure. The over-dispersion refers to the 

presence of a dispersion parameter, which is explained in the Lecture 25 paper used by 

Professor Rachel Altman. 

Barnett and Zehnwirth (2007) introduce the PTF class of lognormal regression models for 

development triangles. This class’ design matrix is very similar to what will be used in this 

project. The PTF class also includes models that include the payment year dimension in the 

analysis, which is important for this study. 
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The output that is generated from the Excel models that will be used is produced by using a 

method called bootstrapping. Bootstrapping is a Monte Carlo simulation technique based on 

repeatedly applying an estimator to randomly generated sets of pseudo data. An in-depth 

discussion of this process is the one by Pinhiero, Andrade e Silva, and Centeno (2003). They 

break down the process into key components: fitting the GLM to the existing data, producing 

fitted data for the upper half of the reserving triangle, creating forecasted reserve numbers for 

the bottom half of the triangle, rescaling the residuals from the upper half of the triangle and 

resampling them with replacement, creating pseudo-data from the resampled residuals for the 

upper half of the triangle, and then repeating the process over again for a specified number of 

bootstrapped estimates. 

A few different residual resampling methods for the GLM will be used in this project. These 

methods are utilized to ensure that negative loss data is not modeled (it is not possible to take 

the logarithm of a negative number). To protect against this occurrence, Hartl (2014) 

formulated two different procedures to alter the residuals so that reserve figures would not 

drop below zero. The first is using a shifted Limited Pareto distribution instead of using the 

scaled residuals from the model. This parametric resampling method draws values from a 

distribution which has a similar mean-variance relationship to the model being used for this 

project. The second method is Split Linear Rescaling, which splits the residual pool into lower 

and higher groups if residuals are a certain percentage below the mean. The values in the 

lower group are “squeezed” together to avoid negative numbers, which preserves the mean 

but alters the variance. To counterbalance this effect, values in the higher group are 

“expanded,” preserving the mean, while offsetting the variance change in the lower group. 

To have something to compare the bootstrapped parameter estimates and sampling 

distribution of reserve estimates to, a closed-form expression of a multivariate normal 

distribution is needed for the asymptotic theory approach; Genz (1992) provides that in his 

paper. The Gaussian copula can then be computed using such techniques as Hothorn, Bretz, 

and Genz (2001) describe for R statistical software (the code used can be found in Appendix 

A). This copula will be used to sample the GLM parameters from, instead of creating pseudo 

data like the bootstrapping procedure does.  
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The tail risk measures that will be compared are Value at Risk (VaR) and Tail Value at Risk 

(TVaR). While VaR and TVaR of higher, right-tailed percentiles (greater than or equal to 

ninety-nine percent) are important in evaluating whether a model over-reserves, more 

attention will be given to VaR and TVaR of lower, left-tailed percentiles (less than or equal to 

one percent) because under-reserving creates more of an issue with insurer solvency. Due to 

that focus, a slightly different calculation of TVaR will be used: TVaRp(X) = average of all 

values less than the pth percentile of the sampling distribution. 

METHODOLOGY – PROCESS 

Parameter Analysis 
The goal of the parameter analysis procedure was to show that the copulas of the GLM 

parameters from each of the bootstrapping sampling methods were statistically significantly 

different than the copula of the GLM parameters from the multivariate normal distribution. 

The bootstrapping model in Microsoft Excel was ran for ten million iterations per resampling 

method (Limited Pareto and Split Linear Rescaling). The output from each of these two 

methods was exported as a CSV file, with each file having seven columns of data. The first 

six columns held the simulated values of each of the six parameters used in the model; the 

seventh column held the reserve residual for each iteration (the difference between modeled 

reserve and the actual reserve). Each CSV file was then processed in SAS 9.3 using the code 

found in Appendix B. The Limited Pareto CSV file was first uploaded into SAS. For each 

parameter, a number from zero to nine was assigned to the estimate from each iteration. The 

number reflected the decile that each estimate fell into, with respect to the complete list of the 

ten million estimates for that specific parameter. For example, zero represented the first 

decile, one represented the second decile, and so on. After each parameter estimate was 

assigned an identifier, each iteration of the six parameters underwent a transformation in order 

to establish a single identifier that could be used as a comparison figure. The decile identifier 

for the first parameter was multiplied by 100,000, the decile for the second parameter was 

multiplied by 10,000, and so on, ending with the sixth parameter being multiplied by one. The 

sum of these six numbers for each iteration was taken, and an identifier, with a range of zero 

to 999,999, was created. In effect, this created a six-dimensional copula (a “hypercube”) that 
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displayed the characteristics of the entire six-parameter structure, with the numerical identifier 

acting as a binning value. A simple count of the number of iterations belonging to each bin 

was then performed. The output from this step was exported as a CSV file, and the entire 

process was then repeated for the Split Linear Rescaling CSV file.  

The ten million sets of parameter estimates derived for the asymptotic approximation were 

calculated using a multivariate normal distribution in R. In addition, a similar process to the 

SAS code was applied to the R output in order to establish bin identifiers for each set of 

parameter estimates and sums of the probabilities (rather than counts) of each bin identifier. 

However, in order to conform to Chi-squared statistic conventions, there needed to be 

restrictions on the totals in each bin for each unique identifier, namely, a minimum of one 

hundred. In order to accomplish this, an additional step was taken to order the parameters 

from smallest to largest and to regroup them into new bins with minimum value of one 

hundred. The total number of bins remaining after this step was 68,405. The output from this 

procedure was pasted into two new Excel workbooks (one for comparison to the Limited 

Pareto method and the other for comparison to the Split Linear Rescaling method). Since the 

total probabilities of all the bins did not add precisely to 1.00 (0.999995608 to be exact), all of 

the probabilities were divided by this total in order to make their sum exactly 1.00. To 

transform the probabilities into counts, each probability was multiplied by ten million. 

In one of the newly created workbooks, the Limited Pareto CSV file data was pasted into a 

new worksheet. An Excel VLOOKUP was used to map the Limited Pareto data to the bins 

that were defined by the multivariate normal parameter sorting, and then the Limited Pareto 

data was summed for each bin. Chi-squared statistics (of the form (Observed – Expected)2 / 

Expected) were calculated for the bin totals, with the Limited Pareto counts as the observed 

and the multivariate normal counts as the expected. The statistics were then added, and using 

the Excel CHISQ.DIST function, the left-tailed Chi-squared p-value was calculated. The same 

process was repeated for the Split Linear Rescaling data in a separate workbook. 

Reserve Estimate Analysis 
The goal of the reserve estimate analysis procedure was to show that the tail measures of risk 

of the sampling distributions of reserve estimates calculated using bootstrapping methods 
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were significantly different than those calculated using the asymptotic theory approximation, 

in terms of risk capital needed. 

Before beginning the analysis of reserve estimates, a few adjustments needed to be made in 

the VBA code in the Excel model. As stated before, the parameters in the linear predictor 

were assumed to be bias-free, but the exponential of the linear predictor could not fall under 

the same assumption. This could be seen when the reserve estimate for the fitted model was 

compared to the average of the bootstrapped simulations of the reserve estimate: the averages 

of the bootstrapped estimates were consistently higher than the fitted estimates. To 

compensate for the bias, the code inserted into the model not only gave the reserve estimates 

for the non-bias-adjusted model, but also included two additional columns of reserve 

estimates: one for the reserve estimates calculated when the model was adjusted with an 

arithmetic correction factor, and the other for the reserve estimates when the model was 

adjusted with a multiplicative correction factor. In each case, the triangle was fitted with 

modeled loss figures, and the bias in each cell was noted and kept track of. Once the model 

fitting was completed, the additive adjustment subtracted out the accumulated bias from each 

cell, while the multiplicative adjustment multiplied each unadjusted cell by the factor 

Projected Reserve / (Projected Reserve + Bias). 

The adjusted bootstrapping model was then run for 100,000 iterations, producing 100,000 

reserve estimates for each combinations of the three model characteristics: resampling 

method, number of diagonals used to fit the GLM, and number of payment period parameters 

used in the model. The three resampling methods used were the Limited Pareto, Split Linear 

Rescaling, and the multivariate normal distribution. The GLM was either fitted using the loss 

data from the lower five or all ten diagonals of the upper triangle. Also, the GLM had either 

two payment period parameters (equivalent to one parameter plus a constant offset value) or 

one payment period parameter (equivalent to no parameter plus a constant offset value). Each 

of the twelve model combinations was run on five different triangles (Taylor and Ashe, 

Alaska Workers Compensation, Chubb Personal Auto Liability, Chubb Commercial Multiple 

Peril, and ACE 2013 General Liability, which are all included in Appendix E), for a total of 

sixty CSV files of sampling distributions of reserve estimates. Each file contained the 
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sampling distribution for the non-bias-adjusted reserves, additively-adjusted reserves, and 

multiplicatively-adjusted reserves.  

Since the focus of the study was focused more on under-reserving than over-reserving, the left 

tails of the sampling distributions were analyzed, at 0.40%, 1%, and 5%. VaR and TVaR 

statistics for each of the additively-adjusted and multiplicatively-adjusted sampling 

distributions were calculated. The VaR figures were calculated by using the LARGE Excel 

function in order to find the (1-p%)*100,000 largest estimate in the sampling distribution. The 

TVaR figures were calculated by using the AVERAGEIF Excel function to take the average 

of all of the estimates smaller than the VaR number at the corresponding percentile. The data 

was then regrouped into five different Excel workbooks, one for each loss triangle used, and 

then partitioned by bias adjustment method, resampling technique, number of diagonals used, 

and number of payment period parameters used. The tail measures of risk were expressed as 

percentages of the projected reserve from their corresponding models (number of diagonals 

and number of payment period parameters used). 

The endgame of analyzing the tail measures of risk of the sampling distributions of the 

reserve estimates was to examine the differences between the three methods in terms of the 

risk capital needed. This was achieved by creating one more set of calculations: comparing 

both the Limited Pareto and Split Linear Rescaling percentage differences to the percentage 

differences from the multivariate normal method. Each VaR and TVaR percentage statistic 

from the bootstrapping methods was divided by its counterpart from the asymptotic 

approximation VaR and TVaR statistics. In effect, this calculation showed the ratio of risk 

capital needed by each bootstrapping method in relation to the asymptotic theory 

approximation.  

RESULTS 

Parameter Analysis 
The sum of the Chi-squared statistics for the Limited Pareto resampling method equaled 

827,185,458.31. With 68,404 degrees of freedom, the left-tailed Chi-squared probability was 

calculated in Excel to be 1.00, which meant that the right-tailed p-value equaled 
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approximately zero (the exact probability was too small for Excel to display). This meant that 

the two resampling methods produced very highly significantly different parameter copulas. 

The same process above was repeated for the Split Linear Rescaling Excel workbook. The 

sum of those statistics was 169,069.33. With 68,404 degrees of freedom, the left-tailed Chi-

squared probability was calculated in Excel to be 1.00, which meant that the right-tailed p-

value equaled approximately zero (the exact probability was too small for Excel to display). 

This meant that the two resampling methods produced very highly significantly different 

parameter copulas.  

Quantile-quantile (Q-Q) plots were created in SAS Enterprise Guide 9.3 for each parameter 

estimated by both the Limited Pareto and Split Linear Rescaling resampling methods. These 

plots are conventionally used to compare a sample distribution of data to another distribution 

(normal, lognormal, etc.). The comparison distribution used was the normal distribution, since 

each of the parameters simulated by the multivariate distribution are normally distributed. The 

Limited Pareto plots are found in Appendix C, while the Split Linear Rescaling plots are 

found in Appendix D. By examining the Limited Pareto plots, it can be seen that all six of 

them had a characteristic shape. Since the series of parameter estimates did not fall on the red 

line in each plot, it can be understood that the parameter estimates were not representative of a 

normal distribution. This confirmed the results calculated from the Chi-squared p-value. By 

examining the Split Linear Rescaling plots, it can be seen that all six of them had a 

characteristic shape, as well. In these six plots, it is not as easy to conclude that the series of 

parameter estimates was not representative of a normal distribution; the estimates lie much 

closer to the red line in each plot. However, the distances between the parameter estimate 

series and the red lines were sufficiently large enough to reject normality. 

Reserve Estimate Analysis 
The Excel output from the VaR and TVaR calculations is presented in the ten charts 

(additively-adjusted and multiplicatively-adjusted estimates for each of the five triangles) in 

Appendix F. As can be seen from the output, certain patterns can be distinguished. The tail 

measures of risk from the multivariate normal resampling and Split Linear Rescaling were 

very similar; the percentages shown in the output did not deviate much from each other. Also, 
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the tail measures of risk from the Limited Pareto resampling generally showed lower 

percentages. This indicated that the sampling distribution was less extreme in the left tail and 

had values closer to the projected reserve number. The Limited Pareto tail measures of risk 

were higher than those from both the multivariate normal and Split Linear Rescaling methods, 

and the difference between the Limited Pareto and the other two generally widened as higher 

percentiles were evaluated. 

The same output also shows the differences in risk capital needed, and there are relatively 

consistent patterns discernible from the results. Generally, the multiplicatively-adjusted risk 

measures are smaller than those from the additively-adjusted method. This would make the 

multiplicatively-adjusted figures more favorable to use over the additively-adjusted figures. 

Also, for the majority of the cases, the difference in risk capital between Split Linear 

Rescaling and the multivariate normal hovers between 1% and 3%, with some instances less 

than 1% and others greater than 10% and even 20%. Differences between Limited Pareto and 

the multivariate normal are much more extreme, with some differences as low as 3%, but 

mostly above 10-20%. The differences escalate as higher tail risk measure percentages are 

evaluated, with differences spiking to 40-60%. 

CONCLUSIONS 
As can be seen from the differences in risk capital needed, there is a significant difference in 

the sampling distributions of the reserve estimates calculated using bootstrapping and those 

calculated using the asymptotic theory approximation. One of the goals of a P&C insurer is to 

have high return on investment (ROI), and this ratio can be expressed as Profit / Risk Capital. 

As the risk capital number decreases, ROI increases. For example, if risk capital decreases by 

10%, ROI increases by 11.11%. Since many of the ratios are significantly large (especially 

using Limited Pareto resampling), and due to the fact that even 2% differences (in either 

direction) in profitability are noteworthy (ratios from approximately 0.98 to 1.02), it can be 

said that the two methodologies are significantly different in terms of their tail risk measures.  

 
 
  



Bootstrapping vs. Asymptotic Theory in Property and Casualty Loss Reserving 
Senior Capstone Project for Andrew J. DiFronzo, Jr. 

- 12 - 

APPENDICES  
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Appendix A – R Code for Multivariate Normal Distribution 
library(mvtnorm) 
varcov <- read.table("C:/Users/thartl/Documents/Research/Assymptotic Theory Case Study 
(DiFronzo)/sigma.txt", sep="\t", header=FALSE) 
varcov <- data.matrix(varcov) 
colnames(varcov) <- NULL 
vct.stdev<-sqrt(diag(varcov)) 
mu <- read.table("C:/Users/thartl/Documents/Research/Assymptotic Theory Case Study 
(DiFronzo)/means.txt", sep="\t", header=FALSE) 
mu <- mu[,1] 
GetCDF<-function(ind){ 
return(pmvnorm(mean=mu,sigma=varcov,lower=MkLower(ind),upper=MkUpper(ind)))} 
MkLower<-function(ind){ 
dbl<-ind 
d6<-qnorm((dbl %% 10)/10) 
dbl<-dbl %/% 10 
d5<-qnorm((dbl %% 10)/10) 
dbl<-dbl %/% 10 
d4<-qnorm((dbl %% 10)/10) 
dbl<-dbl %/% 10 
d3<-qnorm((dbl %% 10)/10) 
dbl<-dbl %/% 10 
d2<-qnorm((dbl %% 10)/10) 
dbl<-dbl %/% 10 
d1<-qnorm((dbl %% 10)/10) 
return(vct.stdev*c(d1,d2,d3,d4,d5,d6)+mu)} 
MkUpper<-function(ind){ 
dbl<-ind 
d6<-qnorm(((dbl %% 10)+1)/10) 
dbl<-dbl %/% 10 
d5<-qnorm(((dbl %% 10)+1)/10) 
dbl<-dbl %/% 10 
d4<-qnorm(((dbl %% 10)+1)/10) 
dbl<-dbl %/% 10 
d3<-qnorm(((dbl %% 10)+1)/10) 
dbl<-dbl %/% 10 
d2<-qnorm(((dbl %% 10)+1)/10) 
dbl<-dbl %/% 10 
d1<-qnorm(((dbl %% 10)+1)/10) 
return(vct.stdev*c(d1,d2,d3,d4,d5,d6)+mu)} 
lst.copula<-lapply(0:999999,GetCDF) 
lst.vals<-sapply(lst.copula, function(m) m[1]) 
write(lst.vals,"C:/Users/thartl/Documents/Research/Assymptotic Theory Case Study 
(DiFronzo)/vals.txt", sep="\n") 
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Appendix B – SAS Code for Binning Parameter Estimates 
options missing='0'; 

 

data test1; 

infile "C:\Users\student\Documents\ExcelOutput\LPTest(10M).csv" 

dlm=","; 

input p1 p2 p3 p4 p5 p6 Reserve; 

run; 

 

proc rank data=test1 groups=10 out=tested1; 

var p1 p2 p3 p4 p5 p6; 

ranks rank_p1 rank_p2 rank_p3 rank_p4 rank_p5 rank_p6; 

run; 

 

data copula1; 

set tested1; 

drop p1 p2 p3 p4 p5 p6 Reserve; 

identifier=(100000*rank_p1)+(10000*rank_p2)+(1000*rank_p3)+(100*rank

_p4)+(10*rank_p5)+(rank_p6); 

run; 

 

proc freq data=copula1; 

tables identifier / nocum nopercent out=copula1; 

run; 

 

data copula1; 

set copula1 (rename=(Count=Count1)); 

run; 

 

data test2; 

infile "C:\Users\student\Documents\ExcelOutput\SLRTest(10M).csv" 

dlm=","; 

input p1 p2 p3 p4 p5 p6 Reserve; 

run; 

 

proc rank data=test2 groups=10 out=tested2; 

var p1 p2 p3 p4 p5 p6; 

ranks rank_p1 rank_p2 rank_p3 rank_p4 rank_p5 rank_p6; 

run; 

 

data copula2; 

set tested2; 

drop p1 p2 p3 p4 p5 p6 Reserve; 

identifier=(100000*rank_p1)+(10000*rank_p2)+(1000*rank_p3)+(100*rank

_p4)+(10*rank_p5)+(rank_p6); 

run; 

 

proc freq data=copula2; 

tables identifier / nocum nopercent out=copula2; 

run; 
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data copula2; 

set copula2 (rename=(Count=Count2)); 

run; 

 

data comparison; 

merge copula1 copula2; 

by identifier; 

drop PERCENT; 

run; 

 

ods csvall file="C:\Users\student\Documents\Honors 

Capstone\ResamplingAnalysis(10)_MergedData.csv"; 

 

proc print data=comparison; 

run; 

 

ods csvall close; 
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Appendix C – Limited Pareto Q-Q Plots 
Capability analysis of: Parameter 1  

 

 

Capability analysis of: Parameter 2  
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Capability analysis of: Parameter 3  

 

 
Capability analysis of: Parameter 4  
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Capability analysis of: Parameter 5  

 
 

Capability analysis of: Parameter 6  
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Appendix D – Split Linear Rescaling Q-Q Plots 
Capability analysis of: Parameter 1  

 

 

Capability analysis of: Parameter 2  

 

 
 
 



Bootstrapping vs. Asymptotic Theory in Property and Casualty Loss Reserving 
Senior Capstone Project for Andrew J. DiFronzo, Jr. 

- 20 - 

Capability analysis of: Parameter 3  

 
 

Capability analysis of: Parameter 4  
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Capability analysis of: Parameter 5  

 

 

Capability analysis of: Parameter 6  
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Appendix E – Triangle Data 
 

 
 

  
 

  
 
 
 
 
 
 
 

Triangle A (incremental) Taylor & Ashe

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 357,848 719,008 617,974 666,748 467,856 283,583 316,627 150,625 253,245 67,948

2 400,050 842,014 896,226 1,195,112 559,160 483,086 308,404 256,003 399,030

3 325,082 847,343 1,114,697 991,117 660,957 326,505 363,715 279,899

4 318,924 1,027,430 901,212 1,142,130 435,503 375,392 387,678

5 383,148 823,017 1,028,973 745,625 496,104 396,443

6 344,219 1,053,896 753,391 952,607 587,599

7 464,785 813,661 1,014,946 1,189,738

8 377,544 1,153,281 1,333,674

9 355,772 1,007,522

10 344,014

Triangle B (incremental) Alaska - WC

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 4,608 4,489 2,593 1,718 1,285 620 401 1,235 536 408

2 3,873 4,033 2,197 1,526 847 870 999 964 526

3 4,488 5,278 2,811 1,928 877 817 488 480

4 4,302 4,264 2,366 1,446 979 785 485

5 5,152 5,205 2,336 1,376 681 656

6 7,496 5,898 3,044 1,602 1,374

7 7,486 7,351 3,558 1,900

8 7,401 5,960 3,189

9 7,772 7,200

10 6,814

Triangle C (incremental) Chubb - PAL

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 69,458 53,502 34,208 20,841 8,630 3,902 1,500 1,642 77 595

2 52,951 45,262 32,176 21,315 11,022 6,370 1,146 792 1,337

3 46,059 42,425 26,585 17,150 10,056 4,463 2,801 513

4 42,297 39,254 23,614 14,490 8,403 3,363 1,945

5 41,479 32,614 26,962 16,208 10,533 2,266

6 36,376 34,240 20,446 16,444 8,338

7 37,714 35,011 28,197 15,498

8 33,457 32,240 22,166

9 33,172 33,722

10 37,784
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Triangle D (incremental) Chubb - CMP

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 241,486 161,157 41,456 44,928 25,187 15,496 7,099 5,292 3,512 3,583

2 382,020 267,774 70,867 41,683 22,497 28,605 4,144 5,969 4,656

3 256,101 208,198 62,943 33,392 27,522 23,199 11,700 31,442

4 281,384 190,936 65,389 39,091 25,360 9,877 12,437

5 452,892 252,514 63,459 48,364 31,437 22,040

6 257,750 163,351 82,750 48,972 50,567

7 296,436 181,029 64,858 54,173

8 431,112 252,447 101,161

9 283,067 349,872

10 228,050

Triangle E (incremental) ACE 2013 - GL

Period Dev 1 2 3 4 5 6 7 8 9 10

Exp

1 67,641 108,301 98,195 96,212 68,927 77,375 64,443 43,850 22,621 21,495

2 62,463 138,727 128,724 161,519 104,053 237,688 55,113 52,052 44,884

3 45,902 105,458 140,400 137,795 129,508 109,144 62,639 38,200

4 46,512 118,497 156,581 268,859 258,671 148,893 105,465

5 42,217 118,143 187,731 185,476 145,113 190,192

6 32,855 116,096 143,389 170,335 117,016

7 47,439 138,701 145,228 127,893

8 59,858 155,475 136,586

9 42,038 141,539

10 50,094
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Appendix F – Tail Measures of Risk Output 
 

Triangle A – Additive Bias Adjustment 

 
 

Triangle A – Multiplicative Bias Adjustment 

 
 
 
 
 
 
 
 
 
 

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 19,342,058$ 0.4 -0.386 -0.415 -0.387 -0.420 -0.354 -0.388 1.002 1.014 0.916 0.936

5 Yes 1.0 -0.347 -0.384 -0.350 -0.388 -0.286 -0.345 1.008 1.010 0.824 0.898

5 Yes 5.0 -0.269 -0.318 -0.268 -0.319 -0.129 -0.214 0.997 1.004 0.479 0.675

5 No 19,030,487$ 0.4 -0.256 -0.278 -0.259 -0.284 -0.251 -0.282 1.014 1.021 0.980 1.017

5 No 1.0 -0.231 -0.256 -0.233 -0.260 -0.194 -0.247 1.007 1.016 0.840 0.964

5 No 5.0 -0.172 -0.208 -0.172 -0.209 -0.080 -0.142 0.998 1.006 0.464 0.685

All Yes 18,878,244$ 0.4 -0.363 -0.394 -0.369 -0.401 -0.324 -0.388 1.015 1.017 0.892 0.984

All Yes 1.0 -0.332 -0.365 -0.333 -0.370 -0.249 -0.323 1.003 1.012 0.749 0.886

All Yes 5.0 -0.254 -0.301 -0.253 -0.302 -0.128 -0.204 0.995 1.002 0.501 0.676

All No 18,680,856$ 0.4 -0.185 -0.201 -0.190 -0.208 -0.165 -0.189 1.030 1.032 0.893 0.939

All No 1.0 -0.165 -0.185 -0.169 -0.190 -0.122 -0.161 1.026 1.030 0.737 0.872

All No 5.0 -0.122 -0.148 -0.124 -0.152 -0.053 -0.094 1.017 1.025 0.434 0.632

SLR LPSLR LPMVN

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 19,342,058$ 0.4 -0.369 -0.397 -0.376 -0.409 -0.348 -0.382 1.019 1.029 0.942 0.961

5 Yes 1.0 -0.333 -0.368 -0.341 -0.377 -0.282 -0.339 1.024 1.025 0.848 0.922

5 Yes 5.0 -0.257 -0.304 -0.261 -0.310 -0.127 -0.211 1.013 1.019 0.492 0.693

5 No 19,030,487$ 0.4 -0.247 -0.269 -0.257 -0.280 -0.249 -0.281 1.037 1.044 1.008 1.046

5 No 1.0 -0.223 -0.248 -0.230 -0.257 -0.193 -0.246 1.031 1.039 0.865 0.992

5 No 5.0 -0.166 -0.200 -0.170 -0.206 -0.079 -0.141 1.022 1.029 0.477 0.705

All Yes 18,878,244$ 0.4 -0.350 -0.380 -0.364 -0.395 -0.320 -0.384 1.038 1.040 0.915 1.010

All Yes 1.0 -0.320 -0.352 -0.328 -0.364 -0.246 -0.320 1.025 1.035 0.768 0.908

All Yes 5.0 -0.245 -0.290 -0.249 -0.298 -0.126 -0.201 1.018 1.026 0.514 0.693

All No 18,680,856$ 0.4 -0.180 -0.196 -0.189 -0.207 -0.165 -0.189 1.055 1.056 0.916 0.961

All No 1.0 -0.161 -0.180 -0.169 -0.190 -0.121 -0.161 1.051 1.054 0.755 0.894

All No 5.0 -0.119 -0.144 -0.123 -0.151 -0.053 -0.093 1.041 1.050 0.445 0.648

SLR LPSLR LPMVN
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Triangle B – Additive Bias Adjustment 

 
 

Triangle B – Multiplicative Bias Adjustment 

 
 
 
 
 
 
 
 
 
 
 

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 44,901$   0.4 -0.348 -0.376 -0.342 -0.369 -0.315 -0.345 0.985 0.980 0.907 0.918

5 Yes 1.0 -0.316 -0.348 -0.312 -0.343 -0.254 -0.309 0.988 0.984 0.804 0.887

5 Yes 5.0 -0.244 -0.288 -0.239 -0.283 -0.119 -0.192 0.979 0.983 0.489 0.666

5 No 44,569$   0.4 -0.226 -0.247 -0.224 -0.247 -0.233 -0.256 0.991 1.001 1.030 1.035

5 No 1.0 -0.203 -0.227 -0.201 -0.226 -0.176 -0.224 0.992 0.996 0.869 0.986

5 No 5.0 -0.151 -0.183 -0.150 -0.182 -0.071 -0.127 0.990 0.994 0.467 0.696

All Yes 46,255$   0.4 -0.315 -0.343 -0.306 -0.333 -0.321 -0.413 0.972 0.972 1.019 1.204

All Yes 1.0 -0.285 -0.316 -0.278 -0.307 -0.206 -0.315 0.976 0.972 0.724 0.996

All Yes 5.0 -0.217 -0.258 -0.212 -0.253 -0.108 -0.177 0.980 0.978 0.500 0.686

All No 54,495$   0.4 -0.165 -0.180 -0.167 -0.185 -0.152 -0.192 1.015 1.029 0.926 1.066

All No 1.0 -0.146 -0.165 -0.148 -0.168 -0.101 -0.149 1.008 1.018 0.693 0.908

All No 5.0 -0.108 -0.132 -0.107 -0.132 -0.043 -0.079 0.984 1.001 0.396 0.597

LPMVN SLR LP SLR

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 44,901$   0.4 -0.332 -0.360 -0.333 -0.359 -0.309 -0.340 1.002 0.997 0.930 0.944

5 Yes 1.0 -0.302 -0.333 -0.304 -0.333 -0.250 -0.304 1.005 1.001 0.826 0.912

5 Yes 5.0 -0.233 -0.275 -0.232 -0.275 -0.117 -0.188 0.997 1.000 0.502 0.684

5 No 44,569$   0.4 -0.220 -0.240 -0.222 -0.245 -0.232 -0.254 1.010 1.020 1.055 1.060

5 No 1.0 -0.197 -0.220 -0.199 -0.224 -0.175 -0.222 1.013 1.015 0.891 1.009

5 No 5.0 -0.146 -0.177 -0.148 -0.180 -0.070 -0.126 1.011 1.013 0.479 0.713

All Yes 46,255$   0.4 -0.305 -0.333 -0.303 -0.330 -0.318 -0.410 0.992 0.992 1.042 1.232

All Yes 1.0 -0.276 -0.306 -0.275 -0.304 -0.204 -0.312 0.995 0.993 0.739 1.018

All Yes 5.0 -0.210 -0.250 -0.210 -0.250 -0.107 -0.175 1.001 0.999 0.511 0.701

All No 54,495$   0.4 -0.160 -0.175 -0.167 -0.185 -0.152 -0.192 1.041 1.054 0.949 1.093

All No 1.0 -0.142 -0.160 -0.147 -0.167 -0.101 -0.149 1.034 1.044 0.711 0.931

All No 5.0 -0.105 -0.128 -0.106 -0.132 -0.043 -0.078 1.011 1.027 0.407 0.613

LPSLRMVN LP SLR
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Triangle C – Additive Bias Adjustment 

 
 

Triangle C – Multiplicative Bias Adjustment 

 
 
 
 
 
 
 
 
 
 
 

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 206,709$ 0.4 -0.205 -0.226 -0.210 -0.231 -0.219 -0.276 1.028 1.026 1.068 1.224

5 Yes 1.0 -0.183 -0.206 -0.188 -0.211 -0.139 -0.215 1.025 1.028 0.762 1.046

5 Yes 5.0 -0.134 -0.164 -0.137 -0.168 -0.057 -0.110 1.019 1.024 0.424 0.669

5 No 211,332$ 0.4 -0.181 -0.199 -0.179 -0.196 -0.200 -0.250 0.990 0.987 1.109 1.258

5 No 1.0 -0.161 -0.181 -0.161 -0.180 -0.127 -0.192 0.999 0.993 0.790 1.063

5 No 5.0 -0.119 -0.145 -0.117 -0.143 -0.048 -0.096 0.979 0.986 0.401 0.661

All Yes 202,167$ 0.4 -0.195 -0.215 -0.199 -0.219 -0.204 -0.268 1.023 1.022 1.048 1.250

All Yes 1.0 -0.175 -0.196 -0.177 -0.199 -0.138 -0.203 1.010 1.019 0.790 1.037

All Yes 5.0 -0.128 -0.156 -0.130 -0.159 -0.052 -0.102 1.016 1.016 0.406 0.654

All No 185,236$ 0.4 -0.146 -0.161 -0.141 -0.155 -0.139 -0.162 0.963 0.962 0.950 1.004

All No 1.0 -0.130 -0.147 -0.125 -0.141 -0.091 -0.132 0.956 0.961 0.696 0.902

All No 5.0 -0.096 -0.117 -0.092 -0.112 -0.035 -0.066 0.958 0.959 0.365 0.568

LPLPSLRMVN SLR

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 206,709$ 0.4 -0.202 -0.222 -0.209 -0.230 -0.218 -0.275 1.036 1.034 1.079 1.239

5 Yes 1.0 -0.180 -0.203 -0.186 -0.210 -0.139 -0.214 1.033 1.036 0.771 1.058

5 Yes 5.0 -0.132 -0.161 -0.136 -0.167 -0.057 -0.109 1.029 1.033 0.428 0.677

5 No 211,332$ 0.4 -0.175 -0.192 -0.178 -0.195 -0.200 -0.249 1.019 1.014 1.146 1.297

5 No 1.0 -0.156 -0.175 -0.160 -0.179 -0.127 -0.192 1.027 1.021 0.815 1.096

5 No 5.0 -0.115 -0.140 -0.116 -0.142 -0.048 -0.095 1.010 1.015 0.414 0.682

All Yes 202,167$ 0.4 -0.192 -0.212 -0.198 -0.219 -0.204 -0.268 1.032 1.031 1.059 1.263

All Yes 1.0 -0.173 -0.193 -0.176 -0.199 -0.138 -0.203 1.018 1.028 0.797 1.048

All Yes 5.0 -0.126 -0.154 -0.130 -0.158 -0.052 -0.102 1.026 1.025 0.409 0.660

All No 185,236$ 0.4 -0.142 -0.156 -0.141 -0.155 -0.139 -0.162 0.991 0.989 0.978 1.033

All No 1.0 -0.126 -0.142 -0.125 -0.141 -0.091 -0.132 0.985 0.989 0.717 0.927

All No 5.0 -0.093 -0.113 -0.092 -0.112 -0.035 -0.066 0.988 0.988 0.377 0.585

LPLPSLRMVN SLR
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Triangle D – Additive Bias Adjustment 

 
 

Triangle D – Multiplicative Bias Adjustment 

 
 
 
 
 
 
 
 
 
 
 
 

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 1,317,995$ 0.4 -0.508 -0.540 -0.454 -0.485 -0.366 -0.417 0.893 0.898 0.720 0.773

5 Yes 1.0 -0.471 -0.508 -0.418 -0.454 -0.304 -0.368 0.887 0.893 0.646 0.723

5 Yes 5.0 -0.375 -0.433 -0.333 -0.384 -0.166 -0.242 0.887 0.887 0.442 0.561

5 No 1,194,049$ 0.4 -0.482 -0.514 -0.401 -0.433 -0.328 -0.370 0.832 0.841 0.681 0.718

5 No 1.0 -0.445 -0.482 -0.365 -0.401 -0.253 -0.320 0.821 0.833 0.570 0.664

5 No 5.0 -0.359 -0.411 -0.283 -0.332 -0.123 -0.198 0.787 0.808 0.344 0.480

All Yes 1,320,654$ 0.4 -0.503 -0.533 -0.447 -0.480 -0.438 -0.545 0.890 0.900 0.871 1.022

All Yes 1.0 -0.464 -0.502 -0.413 -0.448 -0.296 -0.428 0.890 0.893 0.639 0.851

All Yes 5.0 -0.369 -0.426 -0.325 -0.378 -0.165 -0.250 0.880 0.887 0.446 0.588

All No 922,216$     0.4 -0.305 -0.328 -0.257 -0.283 -0.198 -0.246 0.841 0.863 0.648 0.749

All No 1.0 -0.278 -0.306 -0.227 -0.257 -0.136 -0.196 0.818 0.841 0.489 0.640

All No 5.0 -0.216 -0.254 -0.166 -0.204 -0.069 -0.110 0.768 0.801 0.317 0.432

SLR LPLPSLRMVN

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 1,317,995$ 0.4 -0.440 -0.469 -0.426 -0.455 -0.352 -0.406 0.969 0.971 0.802 0.866

5 Yes 1.0 -0.406 -0.440 -0.390 -0.426 -0.292 -0.355 0.961 0.968 0.718 0.807

5 Yes 5.0 -0.318 -0.371 -0.309 -0.358 -0.158 -0.232 0.973 0.967 0.496 0.627

5 No 1,194,049$ 0.4 -0.373 -0.403 -0.381 -0.412 -0.323 -0.364 1.022 1.024 0.865 0.905

5 No 1.0 -0.340 -0.374 -0.346 -0.382 -0.249 -0.315 1.016 1.022 0.732 0.843

5 No 5.0 -0.266 -0.312 -0.266 -0.314 -0.121 -0.194 1.002 1.009 0.455 0.622

All Yes 1,320,654$ 0.4 -0.440 -0.469 -0.435 -0.466 -0.428 -0.534 0.986 0.995 0.972 1.139

All Yes 1.0 -0.405 -0.440 -0.400 -0.435 -0.289 -0.419 0.989 0.990 0.714 0.951

All Yes 5.0 -0.318 -0.370 -0.314 -0.366 -0.160 -0.244 0.989 0.990 0.503 0.659

All No 922,216$     0.4 -0.251 -0.272 -0.256 -0.282 -0.197 -0.246 1.017 1.038 0.785 0.903

All No 1.0 -0.227 -0.251 -0.227 -0.256 -0.136 -0.195 0.999 1.020 0.598 0.777

All No 5.0 -0.171 -0.205 -0.166 -0.203 -0.069 -0.109 0.968 0.990 0.400 0.534

SLR LPLPSLRMVN
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Triangle E – Additive Bias Adjustment 

 
 

Triangle E – Multiplicative Bias Adjustment 

 
 
 
 

  

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 3,867,195$ 0.4 -0.492 -0.527 -0.468 -0.498 -0.422 -0.485 0.950 0.946 0.857 0.922

5 Yes 1.0 -0.452 -0.492 -0.429 -0.467 -0.353 -0.424 0.950 0.949 0.782 0.861

5 Yes 5.0 -0.356 -0.415 -0.339 -0.394 -0.170 -0.274 0.953 0.951 0.478 0.660

5 No 3,877,892$ 0.4 -0.412 -0.442 -0.409 -0.445 -0.344 -0.397 0.994 1.006 0.836 0.897

5 No 1.0 -0.376 -0.412 -0.372 -0.411 -0.261 -0.337 0.989 0.997 0.693 0.817

5 No 5.0 -0.293 -0.344 -0.283 -0.338 -0.124 -0.204 0.968 0.983 0.425 0.594

All Yes 3,454,055$ 0.4 -0.439 -0.472 -0.411 -0.442 -0.360 -0.408 0.935 0.936 0.820 0.865

All Yes 1.0 -0.400 -0.439 -0.373 -0.410 -0.301 -0.360 0.933 0.934 0.751 0.820

All Yes 5.0 -0.310 -0.366 -0.291 -0.342 -0.154 -0.236 0.939 0.934 0.498 0.647

All No 3,744,684$ 0.4 -0.321 -0.345 -0.308 -0.334 -0.260 -0.289 0.961 0.967 0.810 0.836

All No 1.0 -0.290 -0.320 -0.278 -0.308 -0.205 -0.254 0.957 0.963 0.707 0.794

All No 5.0 -0.224 -0.264 -0.210 -0.251 -0.092 -0.155 0.939 0.951 0.411 0.585

LPMVN SLR LP SLR

Payment Projected

Diagonals Parameter Reserve CL% VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

5 Yes 3,867,195$ 0.4 -0.456 -0.489 -0.447 -0.476 -0.411 -0.473 0.979 0.973 0.901 0.968

5 Yes 1.0 -0.419 -0.457 -0.409 -0.446 -0.344 -0.414 0.977 0.977 0.821 0.906

5 Yes 5.0 -0.330 -0.384 -0.323 -0.376 -0.166 -0.267 0.981 0.980 0.503 0.694

5 No 3,877,892$ 0.4 -0.373 -0.403 -0.395 -0.430 -0.339 -0.391 1.057 1.067 0.908 0.972

5 No 1.0 -0.341 -0.374 -0.359 -0.396 -0.257 -0.332 1.051 1.059 0.753 0.887

5 No 5.0 -0.264 -0.312 -0.273 -0.326 -0.122 -0.201 1.031 1.045 0.463 0.646

All Yes 3,454,055$ 0.4 -0.415 -0.446 -0.402 -0.432 -0.355 -0.402 0.968 0.970 0.856 0.902

All Yes 1.0 -0.378 -0.415 -0.365 -0.401 -0.296 -0.355 0.968 0.968 0.784 0.856

All Yes 5.0 -0.292 -0.345 -0.285 -0.334 -0.152 -0.233 0.973 0.969 0.519 0.675

All No 3,744,684$ 0.4 -0.297 -0.320 -0.304 -0.330 -0.258 -0.286 1.026 1.033 0.870 0.896

All No 1.0 -0.269 -0.296 -0.275 -0.305 -0.204 -0.252 1.022 1.029 0.759 0.852

All No 5.0 -0.206 -0.244 -0.208 -0.249 -0.091 -0.154 1.008 1.019 0.444 0.630

LPMVN SLR LP SLR
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