Analyzing Environmental Kuznets Curves

Using a Systems Dynamics Approach

The Honors Program
Senior Capstone Project
Student’s Name: Amreen Ahmad
Faculty Sponsor: Dr. Brian Blais

April 2017
Table of Contents

Abstract ... 1

Introduction .. 2

Background: ... 2

Literature Review: ... 2

Materials and Methods: .. 20

Introduction to Methodology: ... 20

Experimental Methodology: ... 22

Parameter Explanation (Using Canada as an Example): .. 23

Variation in Fits of Models (Using Canada as an Example): ... 29

CO₂ Parameters: ... 33

GDP Parameters: ... 34

Bayesian Information Criterion: ... 35

The Process in Python: ... 35

Results and Discussion .. 36

Visualization of Results- BIC Model Comparison: ... 36

Countries With Very Strong Evidence of Kuznets Effect: ... 46

Final Conclusion: .. 52

References ... 53
ABSTRACT

This paper studies the Environmental Kuznets Curve by examining the relationship between CO$_2$ emissions and GDP per capita data for 200 countries worldwide from the time period of 1950-2015. We use multiple dynamical models - including linear, exponential and feedback models – to search for and quantify the Kuznets effect, the downward shaped U curve in the time-series of environmental quantities. Using the Bayesian Information Criterion to perform model comparison, we determine that there is weak evidence of the Kuznets curve existing in all countries and slightly stronger evidence for it in the OECD and BRICS countries. We discuss some of the implications of this result.
INTRODUCTION

Background:

The Kuznets Curve is an economic concept with scientific implications. It is a hypothetical curve that plots economic degradation against per capita income (see Figure 1). Some substitute variables for the Y-axis are income inequality, Gini coefficient and pollution, all measures of some impact on society. The X-axis variables can be per capita income, Gross Domestic Product, Economic Development etc. which show the development of a particular country. The hypothesis is that as economic factors of a country (such as GDP) increase, at first there is significant harm on society and the environment. Then, as the country becomes more developed and wealthy, the curve shifts downwards as they now have money to spend on rectifying issues of social inequalities and economic degradation. People start to value environmental preservation more therefore making more environmentally-conscious decisions. The curve plots the country’s effect on their surrounding environment as they go from an agriculture-based economy to an industrialized economy (see Figure 2). For the purpose of this paper, the variables we will be examining are environmental degradation against GDP Per capita. Specific environmental pollutants that have been researched/analyzed before include SO$_2$ emissions, CO$_2$ emissions, NO emissions, chlorofluorocarbons, etc.

Literature Review:

This relationship was first proposed by Simon Kuznets in 1901.

An example of the Kuznets Curve follows:
Figure 1: Displays a classical Kuznets curve with Per Capita Income on the X-axis and Income Inequality on the Y-axis. The inverted U shaped curve can be observed from this data set.

This is an example of the Environmental Kuznets Curve (EKC):

Figure 2: Displays the Environmental Kuznets Curve which has Per Capita Income on the X-axis and Environmental Degradation on the Y-axis. The inverted U shape can be observed from this data set.
There is much criticism about the existence of the Kuznets Curve. In the case of the environmental Kuznets curve, one explanation for the turning point is that developed countries outsource manufacturing and other polluting activities to developing countries. Also, Kuznets Curves have only been found to be applicable with certain pollutants and in certain situations, it is not a universal theory (11).

In some cases, researchers have observed an N shaped curve as opposed to the inverted U shape. This suggests that countries pollute as GDP rises and then subsequently spend more money on environmental rehabilitation while making an increasing amount of money before starting to pollute again as income continues to rise. The Kuznets curve is also criticized for lacking predictive power as it cannot predict what the next stage of economic development will be like and what repercussions that will have on the environment. While there are large criticisms, there have been studies on Kuznets Curves that set precedent for this one.

The first model of the environmental degradation Kuznets Curve was examined by Grossman and Krueger in 1991. They used the North American Free Trade Agreement (NAFTA) as the region they would study. NAFTA consists of the U.S., Canada and Mexico and allows all countries within the region to ship goods to participating countries without having to pay import fees and tariffs. It was believed that when Mexico entered NAFTA, both Canada and the U.S. would move all of their environmentally polluting practices there. This would allow them to achieve higher levels of environmental quality while pushing off polluting practices to the least developed country of the group. Grossman and Krueger believed otherwise; they hypothesized
that the existence of free trade in the region would come with higher incomes across the board as well as stricter environmental regulations. They used the Global Environmental Monitoring Systems (GEMS) to find data. GEMS was created by the United Nations and the World Health Organization to monitor air quality around the world on a monthly/weekly basis. Grossman and Krueger monitored 42 countries’ SO2 levels, smoke/dark matter levels in 19 countries and 29 countries for suspended particulates. These countries ranged from least developed to developed nations and they also monitored air quality in suburban, rural and urban locations within the cities. They held several variables constant such as: identifiable geographic characteristics of cities, common global time trend in the levels of pollution and location/type of pollution measurement device. They found statistical evidence for the Kuznets curve as levels of the pollutants in the air rose up until a GDP between $4000 or $5000 (1985 USD measure) before decreasing as GDP continued to rise (1). Other subsequent studies found similar results thereby providing evidence for the Kuznets Curve. What remains a primary issue however is how it is still not widely applicable.

The below charts shows Grossman and Krueger’s estimations of turning points for different pollutants. The second one is especially relevant as those pollutants have been more widely studied and well measured, particularly CO2. (2)
Figure 3: Shows examined turning points in 2001 US Dollars for multiple different pollutants. The turning point refers to the apex of the inverted U shaped curve where the economy begins to impact environment positively and the curve goes from a positive slope to a negative slope.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>EKC Turning Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1985 US$</td>
</tr>
<tr>
<td>Arsenic</td>
<td>$4,900</td>
</tr>
<tr>
<td>Biological oxygen demand</td>
<td>$7,600</td>
</tr>
<tr>
<td>Cadmium</td>
<td>$5,000</td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>$7,900</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>$2,700</td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>$8,000</td>
</tr>
<tr>
<td>Nitrates</td>
<td>$2,000</td>
</tr>
<tr>
<td>Lead</td>
<td>$10,500</td>
</tr>
<tr>
<td>Smoke</td>
<td>$6,200</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>$4,100</td>
</tr>
<tr>
<td>Total coliform</td>
<td>$3,000</td>
</tr>
</tbody>
</table>

Note: The values for 2001 U.S. dollars are approximate.
Figure 4: Shows examined turning points in 2001 US Dollars for multiple different pollutants, these pollutants are the more globally recognized and better measured pollutants. One that is especially relevant to this study is the Carbon Dioxide Turning Point.

What we will be looking at in our study is what factors influence the dynamics of pollution and the economy. We will be using the variables of CO\textsubscript{2} emissions and GDP across different countries to see what other factors may be affecting environmental degradation.

We plan on using Python (computer programming software) to be able to take a dynamical systems approach to this question. Ranganathan and Swain (3) have used a dynamical approach that sets the stage for what we would like to do. They looked at the relationship between Greenhouse Gas Emissions and GDP per capita. One of their first steps was to fit equations for the rate of change of each specific indicator as a function of the level of the indicator and other
levels of other indicators as well. They then use the best-fit model to predict greenhouse gas emissions in 2020. They take their research a step further and actually use these predictions to recommend ways to lower/maintain emissions. Using the best-fit model they can test what effects new environmental regulations and income will have on the environment. They found results indicative of a Kuznets Curve however they list other factors that could explain results as well. These include: greater environmental awareness, education, and preference for higher environmental conditions in developed countries. 100 studies published in the past 25 years all show the following effects:

- Scale effect: when all else is held equal, an increase in output yields a proportionate increase in pollution
- Composition effect: if sectors with high emission intensities grow faster than sectors with low emission intensities then subsequent emission will be pushed higher.
- Technical effect: attribute decreasing sector emission intensities to use of more efficient production and environmentally friendly technologies.

Another previous work we will be relying heavily upon is a paper written collaboratively by Bryant University Economic Student Jonathan Skaza and Bryant University Professor Brian Blais about the relationship between economic growth and environmental degradation (10). They explore models and question the existence of Kuznets curves in this paper. This working paper examines a few different countries and whether or not the Environmental Kuznets Curve applies in these diverse countries. We will make parameter comparisons in these cases to attempt to figure out which conditions yield Kuznets curves and which conditions do not.
As mentioned before, there have been many confounding variables found while conducting Kuznets Curve research. It is by no means a model that works across different countries with varying economic development. What has become clear though is that the GDP vs. CO₂ emission data is well measured and well researched giving us a good starting point. This, coupled with a slew of variables that have been examined throughout other preceding works, should allow us to use our model to analyze this data further.

An article written by Jean-Thomas Bernard, Michael Gavin, Lynda Khalaf, Marcel Voia (4) is a good way to start off our study as they use both parametric as well as nonparametric methods.

A small aside, parametric statistics refers to when a statistical test makes assumptions about the parameters of a population. The parameters can be characteristics that describe the given population. Data in your study comes from this population. In a non-parametric test, no assumptions are made about the population.

They also break down their panels regionally, by trends and by temporal instability. They are working off of literature that proposes that non-linearity of the EKC is not guaranteed. They broke down countries depending on which ones are in the Organization for Economic Cooperation and Development (OECD) and which ones are not. A quick note, the OECD is considered to be a “rich man’s club” as all of the high-income, highly developed countries are included in it.
Table 1: Shows the different countries included in the OECD and BRICS categories.

They were able to discover that the countries in the OECD have confirmed cases of an inverted U-shape EKC curve whereas others do not. They looked at 114 countries for CO₂ and 82 for SO₂
from 1960-2007. They grouped countries into 6 groups, one of which contained all of the OECD countries. When it comes to results, they found that the uncertainties were significant. Their data shows that the EKC exist in OECD countries and some local-pollutant analyses showed evidence of EKC’s in other countries. What they determined is that it is difficult to determine an economically plausible tipping point. The parametric model is the model that they used as the baseline and they used a nonparametric model as a specification check. The parametric model is better respected and more valid, this will be the type of model we will use as well. (4)

The next paper that will be discussed is written by Robalino-Lopez and colleagues. They use systems dynamics to look at the medium term period (1980-2025) of Ecuador to see whether or not the EKC exists. They use a model that related GDP to productive sectoral structure and energy mix with the CO$_2$ emissions.

The CO$_2$ emissions are studied while quantifying the contributions of 5 factors:

1. global industrial activity
2. industry activity mix
3. sectoral energy intensity
4. sectoral energy mix
5. CO$_2$ emission factors

What is interesting about this study as they are looking at the time period of 1980-2025. This study gets into the predictive power of the EKC, which we are hoping to delve into as well. They
extrapolate the future trends by using the geometric growth rate. The below figure details the layers of their model and all of the different variable and factors it includes.

Figure 5: The model used in this study has many subcomponents. This diagram shows the different economic, CO₂ energy and intensity as well as energy consumption factors that are included in their model.

They used their model for four different scenarios:

1. Baseline scenario: the GDP, the energy matrix and the productive sectoral structure are all extrapolated out to 2025 using the geometric growth model.
2. Doubling of the GDP.

3. Doubling of GDP and of the share of renewable energies.

4. Doubling of GDP, doubling of renewable energy share and improvement in the efficiency of energy use.

The figure below shows the graphed results.

![Figure 6: This graph shows the environmental degradation for the different scenarios as well as income elasticity of CO$_2$ and GDP.](image-url)
This data shows that Ecuador fulfills the EKC hypothesis. The elasticity between CO$_2$ and GDP leads to two groups. Baseline and Scenario 2 fall into one family whereas Scenarios 3 and 4 fall into a different family. (5)

We will be relying heavily on the next paper as it is one we will be building our mathematical model off of. This study is done by Coelho and associates. This paper introduces a framework that works for both deterministic and stochastic models. This particular study actually focuses on influenza-like illness rather than the EKC however we are using it because the framework it uses is highly applicable to our study. This framework is based on the Bayesian Melding Method which provides an inferential framework that takes into account any and all information related to a model’s inputs and outputs. In this framework, time-series is a model output.

The extensions that these researchers made to the Melding Method include:

- The ability to use time-series data.
- The use of a multi-chain Markov-chain. This handles non-convex higher dimensional parameter-spaces.

The Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to sample some joint posterior probability distributions. DREAM runs multiple adaptive chains at the same with delayed rejection. In this study they used the simplest model formulation and got results that corroborate other studies on the same topic. This means that the parameter estimation methods they used were precise and accurate. The work “proposes a methodological framework to perform parameter estimation in dynamical models where time series data is available for the
model to be fit against.” There are some limitations of this framework but they can be alleviated by developing more powerful posterior sampling methods. (6)

The following study is done by Wang and colleagues. This work enhances the connection between theoretical and empirical analysis while demonstrating the connection between population growth and the environment. The question they were looking at specifically is how population growth impacts environmental quality and the EKC. An overlapping generations (OLG) model is used to deduce the EKC. Within this model, agents live two years and pollution cannot be avoided. In the OLG there is a trade-off between environmental quality and economic growth. When they graph their data, the inverted U shape appears. Population growth leads to more consumption and production, which in turn creates higher levels of environmental degradation. Under their model, the higher the rate of population growth, the steeper their observed EKC and the more degradation the environment experiences. Boserup says that population growth enhances economic development as it forces humans to innovate new technologies and find ways to make scare factors last longer (7). We are also able to use new innovations to keep up food production and produce just as much, or even more, with the same supply of land. According to the Malthusian argument, as our population increases geometrically and food production increased arithmetically, we will reach a point where we will have no more arable land, energy and other resources will run out and pollution levels will rise above the globe’s assimilative capacity. These researchers pooled much data and found that global population change is positively correlated with increases in CO₂ emissions. They also realized that population change affects emissions much more in developing countries than in developed countries. The study delved into two facets of environmental degradation including industrial
waste gas emission and industrial solid wastes. Their simulations provide evidence that higher populations growths lead to a steeper EKC and a higher turning point. Results indicate that the relationships for industrial waste gas and industrial solid waste exhibits an inverted U-shape like the EKC. While they did find that when they add population growth into their simulation that the pollution levels rise, it is at much slower rates within the developed countries. This means that a population’s growth has a measurable but not very significant effect on pollution levels. (7) The graphs below show their results:

![EKC graphs](image)

Figure 7: The graphs above show the EKC that the study generated. They look at both solid waste and waste gas.

The following work to be discussed is written by Farhani and associates. This paper examines the importance of sustainability related to the EKC. The study looks at two different EKC specifications for 10 countries (in the Middle East as well as in North Africa) from the time period of 1990 to 2010. The first specification for EKC that they look at is just a typical EKC
curve plotting income versus environmental degradation. In this data set they find that the inverted U-shape appears. In the second specification for EKC they examine sustainability related with human development. In this relationship they observed an inverted U shape as well. Human development is now considered to be one of the main drivers of economic growth. The study proposes to replace the income variable of the original EKC with the human development index (HDI). Another replacement they propose is changing the dependent variable from emissions to a measure that portrays macroeconomic sustainability such as the Genuine Saving Index. Panel data methods were used to control for heterogeneity and colinearity among the variables. The region of Middle East and North African countries was chosen because this region is believed to have unsustainable economic growth as well as high impact on the environment, their use of natural resources is unparalleled. The countries they included are Algeria, Bahrain, Egypt, Iran, Jordan, Morocco, Oman, Saudi Arabia, Syria, and Tunisia. These are the specifications they used for their two separate EKC models:

1. **EKC- CO₂ emissions measured in metric tons per capita.** Real GDP per capita is measured in USD Year 2000 levels of inflation. They used a combination of initial level of life expectancy coupled with secondary education level as their Human Development Index measure. Normally income is included in HDI but they took it out so as not to interfere with the other variable which is the GDP per capita.

2. **Modified EKC- negative Genuine Savings per capita in USD Year 2000 levels of inflation.** In this specification the HDI includes life expectancy and education like the first one but also includes income as this time the GDP per capita is not being considered as a variable. They also include rule of law as an important factor as it affects corruption in the country when it comes to regulation of environmental issues.
Some other variables that are consistent across both specifications are

- energy consumption, measured in energy use in kg of oil equivalent per capita
- trade openness, measured in % of GDP
- manufacture value added, measured in % of GDP

They hypothesized that there would be an inverted U shaped relationship between CO₂ emissions per capita and per capita real GDP for the regular EKC specifications as well as the same style of curve for the relationship between negative genuine savings per capita and HDI for the modified EKC specifications. Both of these were found to be true.

What their EKC model predicts is that:

- as energy consumption per capita increases by 1%, CO₂ emissions per capita increases by about 1.82%
- as trade openness increases by 1%, CO₂ emissions per capita increases by about 0.214%
- as manufacture value added increases by 1%, CO₂ emissions per capita increases by about 0.07%
- as Modified HDI increases by 1%, CO₂ emissions per capita increases by about 2%

What their modified EKC model predicts is that:

- as energy consumption per capita increases by 1%, negative Genuine Saving (GS) per capita increases by about 1.153%
- as trade openness increases by 1%, negative GS per capita increases by about 0.252%
• as manufacture value added increases by 1%, negative GS per capita increases by about 0.066%

• as rule of law increases by 1%, negative GS per capita decreases by about 0.019%

What is so impactful about this study is that they use a lot of the data they found to make policy recommendations to countries. This highlights the significance of the work as this kind of data and analysis shows how countries are impacting their environments and gives them specific variables they can focus on to improve. (8)

The following journal article is written by Chow and Li. This paper looks at the persistence of the use of CO₂ when looking at EKC’s because CO₂ impacts are indirect, global and long lasting. Other pollutants such as SO₂ and NOx are not as far reaching and long-lasting as CO₂ which is why CO₂ tends to be the primary emission that is measured in the literature. This paper mentions some important limitations of using panel data when estimating parameters.

These include:

• there are econometric problems associated with time series analysis and these crop up when using panel data as well. What has been determined is that standard regression analysis simply does not work for time series data

• the primary issue in these models is the existence of unit roots. Therefore, we need to check the data before we start to discover whether or not there are any unit roots that will cause issues.
For this analysis they used a t-test on the EKC. They used international data for CO$_2$ emissions from the International Energy Agency as well as GDP per capita data from the World Bank. Their data spanned the years of 1992-2004 and looked at 132 countries. They use their t-test on the EKC treating it as an empirical hypothesis, no theory involved. They did simple t-tests on the cross-section estimates of the coefficient of the square of log(GDP per capita) in a regression of log(emission of CO2 per capita). Their results show that the coefficient is negative thus exhibiting the shape of the proposed EKC. (9)

MATERIALS AND METHODS:

Introduction to Methodology:

The Ranganathan and Swain study (3) used a Bayesian model selection approach to identify the most accurate model, this is similar to our proposed methodology.

They consider log GDP per capita (G) and total Greenhouse Gas Emissions (E) as their parameters. They then attempt to find the best-fit models for changes: dG, dE as a function of G and E (t is the time variable):

1) \[
\frac{dG}{dt} = f_1(G, E)
\]

2) \[
\frac{dE}{dt} = f_2(G, E)
\]

\[
f(G, E) = a_0 + \frac{a_1}{G} + \frac{a_2}{E} + a_3G + a_4E + \frac{a_5}{G} + \frac{a_6}{E} + a_7GE + a_8G^2 + a_9E^2 + \frac{a_{10}}{G} + \frac{a_{11}}{E^2}
\]
In this case G/E is emission efficiency of a country’s economic output and the inverse, E/G is the emission inefficiency level of the economy. After they set up these functions they make a polynomial term that captures various linear and nonlinear effects. They extracted their data from the World Bank. Like Ranganathan and Swain, we will be using the Bayesian statistical inference approach on dynamical models which will give us best estimates and uncertainties in parameters and forecasts. Systems dynamics is “a method for modeling, simulating and analyzing complex systems and its main goal is to understand how a given system evolves.” (5) This is what we are attempting to achieve.

When you do parameter estimations in nonlinear systems, the best and most widely used approach is the Bayesian approach. In this case, using uniform priors the Bayesian method is equivalent to using the maximum likelihood method/ least squares minimization regression. However if we just did that, we wouldn’t have good estimates for uncertainties. Also in this case, the methods don’t take into account suboptimal points whereas in the Bayesian methods, they do.

There are two statistical approaches you could take: Bayesian or Frequentist. When you use uniform priors, they give the same results. When you use informative priors (where we know a bit more about the parameters, which we do) the Bayesian approach yields superior results. The Bayesian approach is the superior approach overall. The only time it is not followed is when it is computationally inconvenient. In that case you can use a frequentist approach as an approximation.

Mathematical models are used because they combine theory with data to predict empirical observations. Data is provided in the form of rate parameters and time series and theory in the form of model formulation. These are combined and provide insight about each other. Parameter estimation and model selection can allow us to compare competing models and to estimate the
key quantities or parameters that make up these models. As a simple example, a one dimensional linear model has a slope and an intercept, whereas a quadratic model has an additional quadratic term. Model comparison techniques tell us which of the two models best describes the data. Parameter estimation provides the best estimates for the slope, intercept, and in the case of the quadratic model the strength of the quadratic term. This, combined with data visualization, can deeply enhance our understanding of the theories. (6)

Experimental Methodology:

2. Data used was CO\textsubscript{2} emissions as well as GDP per capita for 200 countries, including groupings of countries (OECD, BRICS and all countries).

3. Model comparison (if two models fit the same data equivalently then the one that is simpler is the one that is preferred. Complexity is penalized in these cases.)

4. Found optimal models based on BIC comparison between different models.

5. Searched for evidence of Kuznets curves. This would be a negative quadratic term that appeared in our data, represented by the b_4 term being negative.

6. Possible conclusions include: it could be there, it could be there but masked, it could not be there, it could be there sometimes (depending on patterns).

The research started off with modeling the data against the original paper in order to see if we could replicate their results. We were able to use their original formula and data to get similar results. We then started by updating the data in order to be most current. We have used CO\textsubscript{2}
metric ton data and GDP per capita (in USD) data per country from 1950 through 2013 in our research. This data was found on the World Bank website. After creating and modifying the models in Python we started to analyze each variable in order to answer the following questions:

1. Which terms lead to growth, and why? Do they have to be positive or negative?
2. Which terms lead to decay, and why? Do they have to be positive or negative?
3. In the places where G grows, which terms in the E equation could possibly lead to the Kuznets effects (increase followed by decrease) and why?

Parameter Explanation (Using Canada as an Example):

In order to better model the EKC and determine the bounds of each parameter, we will look at an ideal example of the EKC, Canada. From this data we are able to determine the parameters using the Markov Chain Monte Carlo Method (MCMC).

We started off with loading in the data, seen below in Figures 8 and 9.
Then we created different types of models we would use:

Linear:

\[G' = a_0 \]

\[E' = b_0 \]

Exponential:

\[G' = a_0 + a_1 G \]

\[E' = b_0 + b_1 E \]
Feedback:

\[G' = a_0 + a_4 \cdot E \cdot G \]

\[E' = b_0 + b_4 \cdot E \cdot G \]

From there we looked at each individual parameter to see what would fit best within the models.

The \(b_0 \) parameter is one of the first ones we look at. Figure 10 shows that it is very clearly positive with most of the distribution lying in the positive side. This is the slope of the \(E \) line, the \(CO_2 \) emissions data.

Figure 10: The graph shows the parameter distribution for \(b_0 \).
B₁ is another parameter with a negative value and small distribution. Figure 11 shows the distribution.

\[b_1^{97.5} = -0.0711^{+0.395}_{-0.428} \]

Figure 11: The graph shows the parameter distribution for \(b_1 \).

B₄ is one of the most important parameters we are looking at. It is responsible for the downturn in the EKC which is what we are looking for. The entire range of values for B₄ is negative, shown in Figure 12, which it would need to be in order for the shape of the curve to turn downwards after it hits the peak. The negative value demonstrated in the case of the data shows exactly that.
Figure 12: The graph shows the parameter distribution for b_1.

A_0 is a growth factor that very clearly has its whole distribution in the positive range, shown in Figure 13. This accounts for the upwards trend present at the beginning of the EKC and therefore must be positive to maintain the positive growth. This is the slope of the G line, the GDP per capita data.

Figure 13: The graph shows the parameter distribution for a_0.

$$b_{4.25}^{97.5} = -0.00298^{0.0011}_{-0.00301}$$

$$a_{0.25}^{97.5} = 0.150^{0.650}_{-0.089}$$
A₄ is the GDP feedback term and is also negative. Demonstrated by Figure 14.

\[a_{4}^{97.5} = -0.000567 \pm 0.000388 \]

Figure 14: The graph shows the parameter distribution for \(a_4 \).

The following distributions, Figures 15 and 16, show the initial value for the GDP and CO₂ parameters.

\[\text{initial}_{G_{2.5}} = 6.579 \pm 0.638 \]

Figure 15: The graph shows the posterior probability distribution for the initial value of \(G \), the variable corresponding to the log of the GDP. Here the best fit value is around \(G=6.6 \) at the peak of the distribution, and the range is approximately from \(G=5.5 \) up to \(G=8 \).
Figure 16: The graph shows the posterior probability distribution for the initial value of E, the variable corresponding to the CO₂ emission data. Here the best fit value is around $E = 5.6$ at the peak of the distribution, and the range is approximately from $E = 0$ up to $E = 35$.

Variation in Fits of Models (Using Canada as an Example):
After doing the MCMC for each specific parameter we also looked at these graphs that show the distribution of the lines of “best fit”. The darker the green line, that means there is more overlap in the best fit line and that is a stronger model.

Starting off with the linear model, we see this figure:
Figure 17: This figure shows the linear E model overlaid on top of the CO$_2$ data as well as the linear G model overlaid over the log GDP data. It is very clear that given the striations in the green line that this is not a good fit for the CO$_2$ data but is a good fit for log GDP since the green line is very dark and has strong overlap. For the CO$_2$ model you can tell it also does not follow the trend of the data.
The next figure shows the exponential E model and how well it fits the CO$_2$ emission data:

Figure 18: This figure shows the exponential E model overlaid on top of the CO$_2$ data as well as the linear G model overlaid over the log GDP data. It is very clear that given the fewer striations in the green line that this is a better fit for the CO$_2$ data than the linear model and is a good fit for log GDP since the green line is very dark and has strong overlap. For the CO$_2$ model you can tell it follows the trend of the data better than the linear model.
This last figure shows the fit of the feedback model for E as well as the linear G model:

![Graph showing feedback E model and linear G model overlayed on CO₂ and log GDP data](image)

Figure 19: This figure shows the feedback E model overlaid on top of the CO₂ data as well as the linear G model overlaid over the log GDP data. It is very clear that given the fewer striations in the green line that this is a better fit for the CO₂ data than the linear model and is a good fit for log GDP since the green line is very dark and has strong overlap. For the CO₂ model you can tell it follows the trend of the data better than the linear model, and is better than the exponential model since it follows the
downturn presented in the CO₂ data.

Now we will go through the different terms in our equation and determine the parameters/limits of each as well as whether it is a growth or decay factor. Some of these parameters of analytical solutions, which are described below.

CO₂ Parameters:

\[B₀ \Rightarrow \]

\[E' = b₀ \]

\[E = E₀ + b₀*t \]

The \(b₀ \) term leads to linear growth. It must be a growth factor and must be positive. We refer to this term henceforth as the linear term in regards to the \(E \) term.

\[B₁ \Rightarrow \]

\[E' = b₀ + b₁*E \]

\[E = E₀ * e^{b₁*t} \]

This term leads to exponential growth in relation to time therefore it is a growth factor. It must be negative in order to allow for a downturn that exists in the hypothetical EKC. In order to have the initial growth we would need a term that is larger than this one that would eventually be cancelled out through time. This term is referred to henceforth as the exponential \(E \) term.
Analyzing Environmental Kuznets Curves Using a Systems Dynamics Approach
Senior Capstone Project for (Amreen Ahmad)

B₄ =>

E' = b₀ + b₄*E*G

This is one of the most significant parameters we are looking at as it is the feedback term. This is the term that allows for the downturn in the curve leading to the downward shaped U curve indicative of an EKC. It must be negative in order for it to lead to the shape we are looking for. We refer to this parameter as the feedback term throughout the paper. It is masked at low levels of GDP but then eventually due to the magnitude of the E*G relationship, it causes the downward turn in the curve.

GDP Parameters:

A₀ =>

G' = a₀

G' = G₀ + a₀*t

This term is related to growth as well and must be positive. This term is referred to henceforth as the linear G term and it is positive and present in every model as log GDP exhibits linear trends. This is a growth factor.

A₁ =>

G' = a₀ + a₁*G

This term is the exponential term with respect to GDP. We do not use it often but it is a parameter we explored initially. This too is a growth factor.

A₄ =>
\[G' = a_0 + a_4 \cdot E \cdot G \]

This term is the feedback term with respect to GDP. It is a decay factor and leads to the downturn as the E*G value becomes larger.

Bayesian Information Criterion:

Next we will get into the Bayesian Information Criterion (BIC) which is the concept we will be using to determine the efficacy of our models. The model with the lowest BIC is the one that is preferred. As you add more parameters, the likelihood of the fit can increase but you are penalized for adding more parameters. The model with added parameters has to have a better fit to justify the penalties. In general, the lower the BIC, the better.

The Process in Python:

We used Python notebooks to explore our models. We started with one set of data for the USA and looked at the GDP vs. CO\(_2\) data for that country. We used the equation mentioned in the methodology section and changed parameter values by hand that would fit the data best. From there, we used the MCMC method to find the distributions of parameter values that worked well. We then used those distributions to be able to create an automation notebook from which we would then run the data of the 200 countries. We used the distributions as values for the different parameters and then ran the automation that would run the data for all of the different values for the different models we had created. Each model had a few defined parameters that it would use. We then collected the results and graphed the BIC’s against one another for different models.
RESULTS AND DISCUSSION

Visualization of Results- BIC Model Comparison:

This first graph, Figure 20, plots the BIC’s of the linear model against the BIC’s of the CO₂ feedback model. We put a y=x line on the graph to split it in half and visually represent the differences. Note that points on the line mean that the BIC for the model plotted on the y-axis is the same as the BIC for the model plotted on the x-axis – they are equivalently good models. Likewise, points above the line favor the x-axis model and points below the line favor the y-axis model. As is visible in the graph, the feedback model BIC’s tend to be lower on average than the linear model BIC’s. This shows that there is some evidence of the Kuznets effect existing. Also, the majority of the OECD countries are below the y=x line which also shows that there is evidence of a Kuznets effect existing for those countries data.
Figure 20: Plot of the BIC’s of the linear E model against the BIC’s of the feedback E model. Different groupings of countries in legend. On average, the values of the BIC’s for the feedback model are lower.
The next graph, Figure 21, plots the BIC’s of the exponential model and BIC’s of the feedback model against each other. On average, the feedback model BIC’s are lower than the exponential model BIC’s. This graph also shows that there is some evidence of the Kuznets effect existing.
Figure 21: Plot of the values of the BIC of the feedback E model against the values of the BIC of the exponential E model. Different groupings of countries in legend. On average, the feedback model BIC’s are lower.
The next graph, Figure 22, plots the BIC’s of the linear model and BIC’s of the model with feedback in the G and E terms against each other. On average, the double feedback model BIC’s are lower than the exponential model BIC’s. This graph also shows that there is some evidence of the Kuznets effect existing.
Figure 22: Plot of the values of the BIC of the feedback G/E model against the values of the BIC of the feedback E model. Different groupings of countries in legend. On average, the model of feedback G/E has lower BIC’s.
We can also plot the data with the 45 degree line vertically, that would mean a vertical y=x line in an attempt to more easily visualize the differences between models. The following graphs, figures 23-25, show the difference in the BIC values on the x-axis for two models with a vertical y=x line. Deviations from the vertical denote a better fit for one of the models, labeled on the plot itself. Also shown are the 2.5% and 97.5% interval ranges for these differences to help determine if these differences are significant. The data is skewed right in favor of the feedback model showing weak evidence of the Kuznets effect but it is not significant evidence.
Figure 23: Plot of the BIC’s of the feedback E model and linear E model showing the significance interval of 2.5%-97.5%.
Figure 24: Plot of the BIC’s of the feedback E model and exponential E model showing the significance interval of 2.5%-97.5%.
Figure 25: Plot of the BIC’s of the feedback E model and feedback G/E model showing the significance interval of 2.5%-97.5%.
Countries With Very Strong Evidence of Kuznets Effect:
The following graphs show log GDP and CO₂ emissions vs. time and all of the countries represented here have a very clear downward shaped- U pattern to the data.

Figure 26: Plot of the CO₂ emission data for France shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
Figure 27: Plot of the CO$_2$ emission data for Denmark shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
Figure 28: Plot of the CO$_2$ emission data for Switzerland shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
Figure 29: Plot of the CO₂ emission data for Canada shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
Figure 30: Plot of the CO₂ emission data for Bulgaria shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
Figure 31: Plot of the CO$_2$ emission data for the United States shows the clear downturn in the data, and exhibits the downward U-shaped curve which is evidence of the Kuznets effect.
FINAL CONCLUSION:
There is weak but no significant evidence for the Kuznets effect. This effect is more pronounced in the OECD and BRICS countries but still not significant. We believe the methodology used here raises new and unique questions regarding the systems dynamics approach and it’s application to this problem.
(Analyzing Environmental Kuznets Curves Using a Systems Dynamics Approach)
Senior Capstone Project for (Amreen Ahmad)

References

