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Abstract 

Ocular dominance (OD) plasticity is a robust paradigm for examining the functional consequences of 

synaptic plasticity.  Previous experimental and theoretical results have shown that OD plasticity can be 

accounted for by known synaptic plasticity mechanisms, using the assumption that deprivation by lid 

suture eliminates spatial structure in the deprived channel.  Here we show that in the mouse, recovery 

from monocular lid suture can be obtained by binocular lid suture but not by dark rearing.  This poses a 

significant challenge to previous theoretical results.  We therefore performed simulations with a natural 

input environment appropriate for mouse visual cortex.  In contrast to previous work we assume that 

lid suture causes degradation but not elimination of spatial structure, whereas dark rearing produces 

elimination of spatial structure.  We present experimental evidence that supports this assumption, 

measuring responses through sutured lids in the mouse.  The change in assumptions about the input 

environment is sufficient to account for new experimental observations, while still accounting for 

previous experimental results.  
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INTRODUCTION 

 

Ocular dominance (OD) plasticity in visual cortex is a powerful paradigm to investigate how 

experience and deprivation modify connections in the brain.  In the classic experiments of Wiesel and 

Hubel, a rapid ocular dominance shift was achieved through the occlusion of one eye (Law et al. 1994; 

Wiesel and Hubel 1963).  Monocular lid suture (MS) causes cortical neurons to lose responsiveness to 

the deprived eye by a process that is dependent on the structure of activity in the deprived eye 

(Blakemore 1976; Rittenhouse et al. 1999; Rittenhouse et al. 2006) not simply on the decrease in light-

intensity.  Various deprivation experiments that were traditionally performed in cats and have recently 

been replicated in rodents(Frenkel and Bear 2004; Mrsic-Flogel et al. 2007; Sawtell et al. 2003).  

Among other advantages, rodent visual cortex is amenable to chronic monitoring of the changes caused 

by deprivation.  The results have challenged existing notions about the mechanisms responsible for 

deprivation. 

 We have previously shown that the BCM (Bienenstock et al. 1982) learning rule, 

implemented in simulations with patterned environments composed of natural images,  can account for 

normal rearing and various deprivation experiments (Blais et al. 1999; Law et al. 1994).  Modeling 

studies of ocular dominance plasticity were based on the assumption that inputs to the cortex from the 

deprived channel are active, but lack a spatial structure (i.e., correlations).  We have even been able to 

account for the difference between deprivation using MS and deprivation caused by a TTX injection 

into the eye (monocular inactivation, MI) (Frenkel and Bear 2004; Rittenhouse et al. 1999) simply by 

assuming that the activity in these different forms of deprivation has a different variance (Blais et al. 

1999).  Here we present experimental results in which a period of monocular deprivation is followed by 

either binocular lid suture (BS) or by placing the animals in the dark (DE).  These two different 

variants produce significantly different experimental outcomes; a difference that cannot be explained 

by our previous assumptions.   

 In this paper we develop an input environment derived from natural images, with parameters 

appropriate for the mouse visual system.  We alter our assumption about the impact of visual 

deprivation and assume that the input through a sutured eye preserves a degraded version of the 

structured  patterned input (Krug et al. 2001).  With these new assumptions we can account for these 

new experimental results, while still being able to account for previous experiments. 
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MATERIALS AND METHODS 

 

Animal surgery and VEP recording 

Animal surgery, visually evoked potential (VEP) recordings, and visual stimulation protocols were 

performed as previously described (Frenkel and Bear 2004; Frenkel et al. 2006; Sawtell et al. 2003).  

Briefly, a head post was attached to the skull and a recording electrode was implanted into layer 4 of 

the binocular zone of either the right or left primary visual cortex in mice at postnatal day 25 (P25).  

After at least 24-48 hrs of recovery, mice were habituated to a head restraint apparatus.  Animals were 

placed in front of a computer monitor occupying their binocular visual field.  VEPs in response to 

sinusoidal gratings of low spatial frequency (0.05 cycles/deg) square-reversing at 1 Hz were recorded 

on P28.  Both contralateral and ipsilateral eye responses were collected.  Subsequently the visual 

environment was altered for 3 to 7 days by performing one of the following procedures: monocular lid 

suture (MS), binocular lid suture (BS), monocular inactivation (MI) by intraocular TTX injections, or 

putting the animals into a light-tight room (dark exposure, DE).  After 3-7 days, VEPs were recorded 

again in response to stimulation of contra- and ipsilateral eyes.  In experiments to determine the effect 

of binocular lid closure on VEPs, baselines recordings were obtained using three spatial frequencies 

(0.05, 0.15, and 0.3 cycles/degree) with the eyes open.  The animals were then anesthetized and the 

eyelids sutured.  Following recovery from anesthesia, the VEPs were recorded again in response to the 

same stimuli with the eyes closed.  At the end of all experiments, the animals were euthanized and the 

brains were processed for electrode placement verification.  All animal procedures were done in 

accordance with the guidelines of MIT Animal Care and Use Committee. 

 

Simulation training patterns 

In order to approximate the mouse visual system, we start with the following basic properties of the 

retina, LGN and cortex.  There is approximately 1000 photoreceptors feeding into 1 ganglion cell (Jeon 

et al. 1998; Sterling et al. 1988), and there is not much difference in cell density for mouse or cat retina.  

In both cat and mouse the retina/LGN responses show a center-surround organization, but with a center 

diameter around 7-10o  for the mouse and less than 1o  for cat (Grubb and Thompson 2003; Stone and 

Pinto 1993).  Unlike the cat, the mouse has a functional contralateral bias on the order of ~2.5 to 1 

(Drager and Olsen 1980; Frenkel and Bear 2004; Sawtell et al. 2003). 

We use natural scene stimuli for the simulated inputs to the visual system.  We start with 

images taken with a digital camera, with dimensions 1200 pixels by 1600 pixels and 40o by 60o real-
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world angular dimensions (Fig 1A).  We model the ganglion responses using a 32x32 pixel center-

surround difference-of-Gaussians (DOG) filter to process the images, each pixel representing one 

photoreceptor.  The center-surround radius ratio used for the ganglion cell is 1:3, with balanced 

excitatory and inhibitory regions and normalized Gaussian profiles.    To correspond to the 

experimentally determined retinal properties, the images are rescaled before the DOG filter so that the 

center pixel size of the filter corresponds the real-world center size of 7o for the mouse.  The original 

images are reduced to make each pixel correspond to their proper real-space size, and then the ganglion 

response filter is applied.  We then include rotated versions of these filtered images, to make the 

environment more symmetric, and to eliminate any possible biasing effect of small numbers of 

patterns.  The result is 3000 images, each of which has a size of 26x26 pixels.  These images represent 

the ganglion cell responses during natural viewing.  Figure 1A shows the original images, and the 

processed images that represent ganglion cell responses are shown in Figure 1B. 

The specific biological details of the origin of the contralateral bias are not well known.  To 

simply model the contralateral bias we assume that the measured responses (

! 

r
contra" lateral

) are the 

combined responses of two populations of cells: purely binocular and purely monocular cells (Fig 1C).  

Thus, the contralateral responses arise as a mixture of both monocular and binocular cell responses, and 

the ipsilateral responses reflect binocular responses only. 

! 

rcontra" lateral = ybinocular -contra + ymonocular

ripsi" lateral = ybinocular -ipsi
 

where 
contrabinocular!y  is the response of binocular cells stimulated through the contralateral channel only, 

and ipsibinocular!y is the response of binocular cells stimulated through the ipsilateral channel only. 

We assume that normally developed binocular cells have equal response to contra- versus 

ipsilateral stimulation ( ipsibinocularcontrabinocular !! " yy ), and further that under these circumstances the 

monocular and binocular cells contribute equally to the contralateral responses 

(
monocularcontrabinocular
yy !" ).  Thus, under normal conditions, the contralateral response will be 

approximately twice the ipsilateral response, giving rise to the roughly 2 to 1 ratio of contra- to 

ipsilateral responses (C/I ratio) observed experimentally.  Changes to any of these details would not 

significantly affect the qualitative results presented here. 

 

Synaptic Modification 

We use a single neuron and the parabolic form of the BCM (Bienenstock et al. 1982) learning rule for 
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all of the simulations, where the synaptic modification depends on the postsynaptic activity, y, in the 

following way for a single neuron 

 

 

                                                  

 

 

where
i
x is the ith  presynaptic input, 

i
w  is the ith synaptic weight, and y  is the postsynaptic output 

activity.  The constant, 

! 

", refers to the learning rate and the constant, 

! 

" , is what we call the memory 

constant and is related to the speed of the sliding threshold. For binocular cells, the input consists of 

contra- and ipsilateral presynaptic inputs.  For monocular cells, there are only presynaptic inputs 

coming from the contralateral channel. The results are extremely robust to values of 

! 

"  and 

! 

", which 

are generally chosen for practical, rather than theoretical, considerations.   Each of these constants is 

related to the time-step for the simulations, but given the phenomenological nature of the BCM theory 

it is beyond the scope of this paper to make detailed comparisons between simulation time and real-

time.  Further, the fact that 

! 

"  can be changed within a factor of 100 with no noticeable effect, the 

experiments presented here cannot be used address the time-scales of the molecular mechanisms 

underlying synaptic modification.  All of the parameters and code for these simulations can be found 

on the project page for the simulation package Plasticity (http://plasticity.googlecode.com). 

In the BCM learning rule, weights decrease if y is less than the modification threshold, 

! 

"
M

, and 

increase if y  is greater than the modification threshold.  To stabilize learning, the modification 

threshold “slides” as a super-linear function of the output.  The output, y , is related to the product of 

the inputs and the weights via a sigmoidal function, 

! 

y ="(x # w), which places constraints on the 

values of the output, keeping it in the range 501 <y<! .  The interpretation of negative values is 

consistent with previous work(Blais et al. 1998), where the activity values are measured relative to 

spontaneous activity.  Thus, negative values are interpreted as activity below spontaneous.  We 

continue this usage, in order to more easily compare with previous simulations.  The role of the 

spontaneous level for the simulations in the natural image environment is discussed elsewhere (Blais et 

al. 1998). 

The synaptic weights, and the modification threshold, are set to small random initial values at 

the beginning of a simulation.  At each iteration, an input patch is generated from a combination natural 

! 

dwi

dt
="y y #$M( )xi

$M ~ E% y
2[ ]
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images and random noise, drawn from a zero-mean uniform distribution, and then presented to the 

neuron.  The random noise is present to simulate the natural variation in responses of LGN neurons. 

Practically, it avoids the artificial situation of having mathematically identical inputs in the two input 

channels of the binocular cells. The exact values for the standard deviation of the noise in both the 

open- and closed-eye cases is shown in Table 1. 

After each input patch is presented, the weights are modified using the output of the neuron, the 

input values and the current value of the modification threshold.  This process yields orientation 

selective cells with the natural image environment (Blais et al. 1998).  We then present test stimulus 

made from sine-gratings of 24 orientations, optimized for spatial frequency, and the response to the 

preferred orientation is selected as the neuron response.  This is the response that is used in all of the 

plots.  Simulations are ended when selectivity has been achieved and the responses are stable. 

Orientation tuning is calculated by taking the ratio of the first harmonic, F(1), of the Fast Fourier 

Transform (FFT) to the zeroeth harmonic, F(0). 

 

Deprivation in the Mouse Visual System 

In previous work with the BCM learning rule (Blais et al. 1999), deprivation was modeled using 

spatially uncorrelated noise in the deprived eye.  This assumption has been shown to be necessary to be 

consistent with the experiments which demonstrate that presynaptic activity is needed for the ocular 

dominance shift in MS (Rittenhouse et al. 1999; Rittenhouse et al. 2006), and that more presynaptic 

activity in the deprived channel give rise to a faster ocular dominance shift.  With BCM, the resulting 

ocular dominance shift in monocular deprivation occurs as a result of patterned input competing with 

unpatterned noise.  

In the current work, we model inputs to the deprived channel as a significantly scaled-down and 

corrupted natural image stimulus, where the inputs are scaled down by a factor of 5 and corrupted with 

a Gaussian blur filter with additional random noise, again drawn from a zero-mean uniform 

distribution.  This is to provide spatial structure to the deprived inputs in a simple and direct way, 

which is tunable and easy to interpret.  Table 1 provides the exact parameters for the filter and the noise 

for deprived channels.  The scaled-down factor of 5 is performed to be consistent with measurements 

through the lid-sutured eyes, shown in Fig 3.  Thus, with the BCM learning rule and structure in the 

deprived channel, ocular dominance shifts in MS are a result of competition between two different 

qualities of patterned input: degraded versus normal patterns.  BS effects are due to selective cells 

presented with degraded, noisy input patterns. 
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Results 

 

Experimental observations of the effects of visual deprivation and recovery 

In order to assess the effect of different deprivation protocols, we recorded VEPs (Sawtell et al. 2003) 

from young mice before and after the deprivation protocols.  As shown previously (Frenkel and Bear 

2004), 3 days of MS are sufficient to significantly reduce the magnitude of the VEP from the 

contralateral (C) eye, with no change in the ipsilateral (I) eye VEP (Fig 2A). The C/I VEP ratio shifts 

significantly, from approximately 2:1 to 1:1 (P = 0.01, Wilcoxon Signed Rank Test).  

The loss of deprived eye responses reflects some form of competition, as demonstrated by a 

comparison of the effects of MS with a comparable period of binocular deprivation.  Three days of BS 

causes no change in the magnitude of either the contralateral or ipsilateral eye VEP (Fig 2B).  

Similarly, 4 days of total light deprivation by DE has no effect on VEPs (Fig 2D).   

If 3 days of MS are followed by 4 days BS, however, the result after these 7 days is 

indistinguishable from the initial condition at the first day of recording (Fig 2C).  This implies that 4 

days of BS produce a full recovery from prior MS.  This result is surprising because, as seen above, BS 

alone does not seem to have any effect on cortical responses (Fig 2B).  Some clues about why recovery 

from deprivation can occur during BS can be found in the surprising difference between BS and DE.  

When MS is followed by DE (Fig 2E) the ocular dominance shift is retained and is similar to the shift 

after MS alone.   

The difference between MS followed by BS (Fig 2D) and MS followed by DE (Fig 2E) cannot 

be accounted for by our previous assumptions regarding normal and deprived rearing conditions.  In 

particular our previous assumptions cannot account for the recovery of the deprived eye during the 4 

days of BS.  We postulate that these results can be accounted for by assuming that during an MS 

protocol, the activity pattern in the retina is not random noise, but that some patterned vision is 

preserved through the sutured eyelid (Krug et al. 2001).  We examined this hypothesis in the awake 

mouse preparation by comparing VEPs evoked through open and closed eyelids.  As expected, there 

was a significant (approximately 5-fold) decrease in VEP amplitude, but a response was still clearly 

evoked at low spatial frequencies (Fig. 3).  We explore the concept of deprivation as degraded input 

using a model of synaptic modification in the mouse visual system. 

 

Model of normal rearing 
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Our model of the mouse visual system and the training patterns appropriate for mouse simulations 

differ from assumption appropriate for cat simulations (Methods).  First, the visual acuity in the mouse 

retina is much lower than for cat.  This results in patterns of retinal activity in mouse (Fig 1B) that are 

blurry and carry little information about the high spatial frequency features of the visual environment.  

Second, the mouse has a significant contralateral bias.  We represent this by assuming that half the cells 

in the mouse binocular region are binocular and respond equally to both eyes, while the other half is 

monocular and responds only to the contralateral eye (Fig 1C). 

In Figure 4 we show the development of cortical responsiveness during normal rearing (NR) 

(Blais et al. 1998; Law et al. 1994).  Normal rearing (NR) is modeled using inputs derived from natural 

images (Methods), the synapses are modified with the BCM learning rule (Methods), and the cell 

develops normal orientation-selective responses.  On the left hand side of Fig 4A we show the maximal 

contralateral and ipsilateral responses to test stimuli as they develop over time in a binocular cell.  The 

response to stimulation of both eyes is nearly identical.  On the right hand side of Fig 4A we show the 

developing responses of a monocular cell.  The cortical response shown in Fig 4B, is a sum of the 

responses of the monocular and binocular cells, as would be reflected in a population measure such as a 

VEP, and we see that it develops the observed contralateral bias.  

This is the first time that images appropriate for the mouse visual systems acuity have been used 

for simulations of developing cortical receptive fields.  Analogous to the development of receptive 

fields using higher acuity images, orientation selectivity is developed with lower acuity images, but 

cells are more broadly tuned and are tuned to lower spatial frequency (data not shown) as would be 

expected for the rodent visual system (Gordon and Stryker 1996; Metin et al. 1988). 

 

Simulations of deprivation experiments and recovery 

A major question posed by the experimental results of Figure 2, is why there is such a difference 

between MS followed by BS and MS followed by DE.  In this paper we assume that these protocols 

differ in their input environment.  We assume that in MS the input coming from the deprived eye is a 

significantly scaled-down and degraded version of the patterned input present in the non-deprived eye. 

Similarly, in BS input from both eyes is degraded.  We implement the degradation by convolving the 

inputs with a Gaussian blur filter and adding random noise (see Methods section for details).  In 

contrast we assume that during DE the activity in both channels is comprised entirely of random noise.  

Table 1 gives the properties of the pattern and noise in all of the deprivation protocols. 

The simulated outcome of MS driven by degraded inputs (Fig 5A) appears no different from the 
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consequences deprivation resulting from uncorrelated noise.  Despite the presence of structure in the 

retinal activity, the deprived contralateral eye is depressed, and the ratio between contra and ipsi 

responses (C/I) changes from 2 down to 1, as observed experimentally (Fig 2A).  This occurs because 

the open eye input has more structure than the deprived eye input, and wins in the resulting competition 

between the two eyes.  BCM theory has the property that there is competition between input patterns, 

with the neuron modifying its synapses to achieve maximal selectivity.  As such, when the neuron is 

presented with an environment with 2 separate components, like the MS environment with degraded 

and non-degraded inputs, synapses will modify and the neuron will select the non-degraded inputs 

preferentially.  Thus, the results of MS can be achieved with both degraded inputs or random noise in 

the deprived channel.  However, as we show presently, the results of BS can be only achieved with 

degraded inputs. 

Binocular suture (BS) following normal rearing appears to have little effect on absolute visual 

responsiveness (Fig 5B,C).  However, a finer examination of the receptive fields shows us that they 

indeed change after BS (Fig 6A)—they lose selectivity and respond to optimally to lower spatial 

frequencies because they become sensitive to the degraded structure in the binocularly deprived 

channels.  However when NR is followed by DE, the receptive fields do not change appreciably—they 

remain selective and responsive to the same optimal spatial frequency as normal mice (Fig 6B).  This is 

one of the testable predictions of this model.  

When 3 days of MS are followed by BS (Fig 5C), we obtain a full recovery of the deprived eye 

responses.  This is consistent with experimental results (Fig 2D).  In contrast, when MS is followed by 

DE no recovery occurs (Fig 5E) as observed experimentally.  The recovery in the BS case occurs 

because the neuron retains the degraded structure in the deprived channels, in the absence of 

competition with a non-deprived channel.  In contrast, during DE there is no structure in the deprived 

input, and therefore responses can not recover. 

 

DISCUSSION 

Previous studies demonstrated that the BCM rule trained with an input environment composed of 

natural images can account for many experimental results under normal and deprived rearing 

conditions (Blais et al. 1999; Law et al. 1994; Shouval et al. 2002).  In these previous simulations we 

assumed that monocular lid suture can be represented by spatially uncorrelated random activity in the 

deprived channel.  Here we present experimental results showing that BS results in recovery of the 

previously deprived eye, whereas MS followed by DE results in no recovery.  These results are 
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inconsistent with our previous assumptions.  We show that we can theoretically account for these new 

experimental results if we change our assumptions about inputs from a channel deprived by lid suture.  

Here we postulate that inputs from a lid sutured channel are drastically scaled-down and degraded 

versions of normal mouse vision, and this assumption is sufficient to account for the new experimental 

observations.  This new assumption can account for the new experimental results for the following 

reason:  If the degraded input is in competition with a channel with normal vision, it will lose out and 

there will be depression of the response from the deprived channel.  However, during BS both channels 

are degraded, but have sufficient visual structure for developing responsive cells, and recovering from 

MS.  During dark rearing, in contrast, the channels have no structure and no recovery from MS is 

obtained.  

 

Structure, Noise, and BCM Modification 

The BCM learning rule has the property that, all other things being equal, the output value is 

maintained when input magnitude is changed.  Thus, when the patterned input intensity decreases, the 

weights increase “homeostatically” to maintain the output.  Responses to test or probe stimuli, 

however, will then be increased relative to the responses before changing the input magnitude.   

BCM has a second property that, for selective neurons, the output is inversely proportional to 

the number of patterns in the environment to which it is selective: neurons respond stronger to more 

rare patterns.  One outcome of blurring is to make more patterns similar, which would make a neuron 

less selective, and drive the weights down.  Thus, the more degraded the patterned input, the closer the 

dynamics will be to the results from previous studies (Blais et al. 1999; Law et al. 1994; Shouval et al. 

2002) using only noise: ocular dominance shifts from monocular deprivation will be more pronounced, 

and responses will decrease for binocular deprivation. 

A third property of BCM is that if there is noise in addition to pattern, increased noise decreases 

the weights, again to maintain the overall mean output value.  This effect is more rapid with more 

noise, as explored previously (Blais et al. 1999).   

These three properties of the BCM modification rule put constraints on the parameter values 

needed to be consistent with the observed dynamics of deprivation.  In the case of BS, in order to get 

no change following normal rearing, and full recovery following brief MS, the noise level, amount of 

degradation of the input patterns, and the scale of the input patterns must be closely balanced.  Thus, 

the experiments place constraints on the parameter values.  Using the parameters that are consistent 

with BS, the other results presented follow. 
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Robustness of the simulations 

 The results presented are robust to certain changes in the parameters or architecture, and are 

sensitive to others.  The sensitivity leads both to predictions and to a better understanding of the source 

of the results.  Time parameters, such as the learning rate and the memory constant, are not critical to 

any of the results presented.  The learning rate is chosen for the practical reason of making sure the 

simulations run in a reasonable amount of time.  The memory constant can be changed by at least a 

factor of 100 with no effect whatsoever, however if it is set too high then the neuron will experience 

strong oscillations and never converge.   

 The particular model of the contralateral bias presented here is simplistic, but we do not believe 

that the results are qualitatively dependent on this choice.  The exact nature and source of the 

contralateral bias is not well understood, so the simpler the model the better until we have data to 

constrain the model further.  

 The choice of image degradation, random noise in the deprived channel, and the scale of the 

deprived inputs are far more critical to these results, and they are linked.  If, for example, one changes 

the distribution from a uniform distribution to a normal distribution for the noise, it would have a 

similar effect to increasing the magnitude of the noise.  This would tend to drive a BCM neuron to 

lower responses in BS.  To remain consistent with the present results, one would have to modify the 

image degradation to be less degraded or perhaps reduce the scale of the deprived inputs.  The 

homeostatic properties of BCM would allow the neuron to maintain responses, as long as a balance in 

the input properties are maintained. 

 A recent study by Mrsic-Flogel et al. (2007) used two-photon calcium imaging to measure 

responses of neurons after MS and BS.  They observe increases in responses of binocular neurons after 

BS, and increases in deprived-eye responses in neurons devoid of open-eye input in MS.  They suggest 

that this finding is inconsistent with a Hebbian-type learning mechanism (BCM, specifically), and is 

only consistent with a general homeostatic process which preserves the net visual drive of each neuron.  

However, the homeostatic property of BCM, combined with the small amount of pattern present in 

deprived inputs, would account for the increases in deprived-eye responses they observe.  On the other 

hand, the DE results presented here are inconsistent with the homeostatic model they propose.  A 

homeostatic mechanism would predict even more increases in responses following DE compared with 

BS, which is not observed. 
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Origin of Structured Input 

In these simulations we assume that a channel deprived by lid suture carries a diminished and 

degraded version of the patterned input, and that dark rearing leads to uncorrelated noise.  It is clear 

from the difference between the experiments in which monocular deprivation is followed by BS or DE 

that lid suture deprivation is very different from light removal.  The critical difference may be that 

enough light can enter through the sutured eyelid to evoke cortical responses, albeit weakly (Fig. 3).  

Of course, the “patterns” resulting from the light through the eyelid are certainly not equivalent to 

patterned input during normal vision.  It is possible that the light intensity through the sutured lid 

generates activity that yields structure (correlations) either in the retina or the LGN.  Another 

possibility is the recruitment of feedback from the cortex to LGN, which could influence the 

correlations in LGN neuronal firing, which could lead to correlated input back to the cortex.  Each of 

these possibilities is testable, and should help us determine the critical properties of the visual system 

involved. 

 

Future Directions 

A more biophysical model may be necessary to get the detailed dynamics, but the simulations 

presented here already help us to determine the issues at hand.  Some of the assumptions need to be 

explored both theoretically and experimentally.  For example, the origin of the contralateral bias is not 

completely understood, and might play a significant role in the dynamics of deprivation, although the 

results presented here are robust to different models of the bias.  Most importantly, it is a prediction of 

this model that the LGN activity during lid suture is more correlated than the activity during dark 

exposure.  These correlations should be experimentally verifiable, and their source explored.   

The mouse visual cortex has now become the standard model to study ocular dominance 

plasticity.  Among numerous advantages, the absence ocular dominance columns and other types of 

cortical anisotropy make chronic recordings of response changes in awake  animals feasible, yielding 

data on changes in absolute and relative visual responsiveness when visual experience is manipulated.  

Moreover, VEP recordings can be made from layer 4, where information from the two eyes first 

converges onto the same neurons.  The relative simplicity of the mouse visual cortex and the ability to 

measure the dynamics of plasticity at thalamocortical synapses make this an excellent system to bring 

theoretical models into closer correspondence with biological reality.   
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FIG. 1.  Model assumptions, natural images and contralateral bias.  Inputs that drive receptive field 

development as derived from natural images. A.  An example of an original image.  B.  The 

resulting distribution of retinal ganglion cell and LGN neuron activity, using parameters 

appropriate for modeling the mouse visual system.  The filter used is a difference-of-Gaussians 

(DOG) with a center/surround radius ratio of 1 to 3. C. The rodent visual system has a strong 

contralateral bias. We use a simplified architecture to model the contralateral bias.  Two pools 

of cells combine to give responses.  Binocular cells (black) respond equally to contra and 

ipsilateral stimulation, while monocular cells (gray) respond only to contralateral stimulation.  

If the number of binocular cells is equal to the number of monocular cells, then the contra-to-

ipsilateral response ratio (C/I) will be ~2:1. 
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FIG. 2. Monocular deprivation and recovery: Experimental results.  A. MS for 3 days causes depression 

of the contralateral VEP (n = 8, contralateral VEP amplitude ± SEM on day 0: 217 ± 18 µV; on 

day 3: 123 ± 15 µV; ipsilateral amplitude on day 0: 107 ± 14 µV;  on day 3: 117 ± 12 µV, P < 

0.05 paired t-test).  B. BS for 3 days does not alter the VEPs (n = 6, contralateral VEP 

amplitude ± SEM on day 0: 222 ± 31 µV; on day 3: 227 ± 35 µV; ipsilateral amplitude on day 

0: 87 ± 11 µV; on day 3: 92 ± 11 µV, data previously published by Frenkel and Bear, 2004).  C. 

MS for 3 days followed by 4 days of BS produces responses at day 7 that are indistinguishable 

from responses at the beginning of the trial (n = 5, contralateral VEP amplitude ± SEM on day 
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0: 156 ± 10 µV; on day 7: 161 ± 14 µV; ipsilateral amplitude on day 0: 74 ± 6 µV; on day 7: 80 

± 7 µV).  D. 4 days of DE do not change the VEPs (n = 6, contralateral VEP amplitude ± SEM 

on day 0: 148 ± 31 µV; on day 7: 144 ± 32 µV; ipsilateral amplitude on day 0: 70 ± 15 µV; on 

day 7: 78 ± 16 µV).  E. 4 days of DE does not affect the shift caused by 3 days of MS (n = 10, 

contralateral VEP amplitude ± SEM on day 0: 144 ± 9 µV; on day 7: 92 ± 6 µV; ipsilateral 

amplitude on day 0: 74 ± 6 µV; on day 7: 104 ± 11 µV). Asterisks correspond to P-values less 

than 0.05 using paired t-test. 
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FIG. 3. VEP responses elicited through shut eyes. VEPs were recorded in response to grating stimuli of 

various spatial frequencies (0.05, 0.15, and 0.30 cyc/deg) at 100% contrast while both eyes 

were open (solid line) and following binocular deprivation by lid suture (black dashed line). 

Baseline recordings were made in response to a gray screen of equal luminance (gray dashed 

line). VEPs in response to all spatial frequencies were significantly greater than baseline when 

both eyes were open (post-hoc paired t-test, p < 0.001). Only the 0.05 cyc/deg grating stimulus 

was able to elicit a VEP response significantly different from baseline through the sutured eyes 

(post-hoc paired t-test, p < 0.001). Posthoc statistical comparisons were done after reaching 

significance with repeated measures two-way ANOVA (p < 0.001). 
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FIG. 4.  Normal rearing in a mouse model.  A.  Binocular (left) and Monocular (right) cell responses, 

versus time.  The y-axis represents the response of the trained neurons to test stimuli at the 

preferred orientation, measured in arbitrary units.  As the model neuron is trained with natural 

images, the cell becomes selective, responding more strongly to oriented stimuli.  B.  

Combining the binocular and monocular responses, to mimic the VEP recordings, yields 

contralateral and ipsilateral responses that are used for all of the simulations.  The binocular and 

monocular cell responses contribute equally to the contralateral responses, and the ipsilateral 

responses include only binocular responses from the ipsilateral channel.    All responses are 

measured in arbitrary units.  Contra-to-ipsi response ratio (C/I) is approximately 2:1 for normal 

mouse. 
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FIG. 5.  Simulations of monocular deprivation and recovery.   A. The contralateral bias is reduced 

during simulations of MS, in which the deprived channel is modeled as degraded and noisy 

patterned input. B. BS (two degraded channels) does not alter the contralateral bias or absolute 

responsiveness. C. BS after MS results in a recovery of the deprived eye responses.  D. DE does 

not alter the contralateral bias or absolute responsiveness.   E. DE after MS does not result in a 

recovery of deprived eye responses. 
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FIG. 6.  Spatial frequency and orientation tuning of simulated cells after recovery.   A.  The optimal 

spatial frequency is reduced after BS, compared to normal cells.  DE results in no change in 

optimal spatial frequency. B. Orientation tuning is reduced in BS and unchanged in DE 

compared to normal cells. 
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Default Parameters 

Parameter Value 

open-eye pattern standard deviation  1.0 

deprived eye degraded pattern  

standard deviation 

0.2 

deprived eye degraded pattern blur size 3 pixels 

open-eye noise standard deviation 0.1 

deprived eye noise standard deviation 0.1 

dark eye noise standard deviation 0.05 

difference of Gaussian center/surround 2 pixel/6 pixel 

  

total simulation time 4·107 iterations 

memory constant, 

! 

"  1000 iterations 

learning rate, 

! 

" 5·10-6 iterations-1 

  

Table 1: Default parameters for the simulations 

 

 

 


