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ABSTRACT 
The purpose of this Senior Capstone project is to analyze the distinctions between 

existing playoff systems. In particular, we are looking to analyze the differences between the 

standard single-elimination tournament (which the NCAA has used since the inception of the 

tournament) and other potential options: double-elimination and multiple game series. Popular 

sports such as Major League Baseball and the National Basketball Association all use 

multiple game series for their playoffs. This project will use probability theory and simulation 

to determine the likelihood of different seeds winning a championship as well as the expected 

number of victories by seed in each tournament format. In addition, a comparison of playoff 

earnings versus general team expenditures are examined for three playoff structures. 
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INTRODUCTION 
My parents always told me that you have never watched a sport until you watch its 

playoffs. Granted they were talking about hockey, a sport I never became interested in, but the 

mantra holds true across sports. What makes playoff games inherently more compelling than 

their regular season counterparts? There are the bright lights of the national spotlight and the 

added pressure of competing for a chance at a championship. More relevant to this analysis, 

however is the added intrigue of the playoff systems themselves. Even in Major League 

Baseball, the longest series between any given teams in the regular season is four games but 

their playoff series can go as long as seven. Likewise, the National Basketball Association 

may have the occasional back-to-back with a single team during the regular season but their 

playoff series are also a best of seven. Lastly, each round in the NCAA Basketball 

Tournament is a single game series, typically featuring two teams who did not face one 

another in the regular season.  

EXPLANATION OF TOURNAMENTS 
The most famous playoff system in sports is the NCAA Division I Men’s Basketball 

Tournament, though most people know it simply as “March Madness.” After the initial four 

“play-in” games, teams are slotted into a 64 team field broken down into four regions of 

sixteen teams each. An example of the NCAA bracket is attached as Appendix A. The teams 

are paired off in combinations (1 v 16, 2 v 15, and so on) in each region based on a variety of 

factors including quality wins and bad losses, strength of schedule, opponent strength of 

schedule, etc. The top four teams for each region are slotted specifically based on a snaking 

order of the top 16 teams in the country, while the remainder of the region is loosely ranked 

on talent with allowances made for proximity to the regional sites where games are to be 

played. Teams with a lower seed number are, in the eyes of the tournament selection 

committee, considered better – number 1 seeds are strongest and team strength descends with 

seed number. As a result, matchups with a wider spread in the numbers tend to have increased 

margins of victory. For example, a 16 seed has never beaten a 1 seed, dating back to the 

beginnings of the 64 team field in 1985. Not all matchups are that one-sided, however. The 

tournament earned the “March Madness” moniker over time for its proclivity for upsets, 
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matchups in which the perceived “worse” team defeats their higher ranked opponent. The 

NCAA Men’s Tournament is immensely popular as demonstrated by CBS/Turner 

Broadcasting’s willingness to pay $10.8 billion for the rights to broadcast the tournament 

from 2011-2024. In addition, upwards of $9 billion was gambled on the tournament in 2015.  

 By contrast, most professional sports leagues use multiple-game series to decide their 

champions. Since 2012, Major League Baseball has used a one game Wild Card playoff 

followed by a five-game League Divisional Series and seven game League Championship 

Series and World Series. The shorter early round series is used to avoid strain on pitching, 

which presumably increases the quality of play in later rounds. Five teams each from the 

American and National Leagues make the playoffs, with the two Wild Card teams competing 

in the one game playoff before being slotted into the four team bracket. The winners from the 

American and National League compete for Major League Baseball’s title, the World Series. 

The MLB playoffs are considered one of the more random events in sports, especially given 

the success of Wild Card teams (ex. Royals-Giants World Series in 2014). An example of the 

current Major League Baseball playoff bracket is attached as Appendix B. 

 The National Basketball Association follows a similar model to Major League 

Baseball but with greater simplicity. The NBA is split into two conferences, Eastern and 

Western. From each fifteen team league, eight teams make the playoffs. They are then slotted 

into an eight-team tournament based on winning percentage with the best team seeded as the 

1-seed and the worst as the 8-seed in each conference. Teams are paired off so that the 1 seed 

plays the 8 seed, 2 plays the 7, and so on. There used to be a small wrinkle that a team that 

wins their division in the regular season could be no lower than a 4-seed in the playoffs 

(ensuring home-court advantage in at least one series). However, this rule was disbanded 

beginning with the 2016 NBA playoffs. An example of the current NBA playoff bracket is 

attached as Appendix C.  

 The distinctions between existing systems are important. In a single-elimination 

bracket, the premise is simple: if a team loses once, they are eliminated from the tournament 

altogether. This system is less time-consuming to conduct which makes it ideal for the rapid 

movement of the NCAA Men’s and Women’s Basketball Tournaments, as the NCAA does 

not want to take too much additional classroom time away from its student-athletes. However, 
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the use of a single game series lends itself to increased potential for weaker teams to defeat 

stronger teams, thus creating weaker matchups later in the bracket. 

 Multiple game series increase the logistic and scheduling needs for the postseason 

tournament but increase revenues as a result from additional gate receipts and television 

exposure. In addition, multiple game series aid in the advancement of the sport’s better teams, 

leading to a better quality bracket overall. There are built in probabilistic advantages for better 

teams when the length of the series is extended. 

LITERATURE REVIEW 
 The literature on the topic of playoff series is varied and expansive, depending on the 

style of playoff tournament. Research on playoff structures goes back over 60 years, with 

much of the early focus on America’s pastime, baseball. Over the years, the growth of the 

sport of basketball increased focus on the National Basketball Association and the NCAA.  

As mentioned previously, the NCAA Men’s Basketball is a seeded, 64 team single-

elimination bracket. The bracket itself is attached in Appendix A for reference. Analysis from 

Robert Baumann, Victor Matheson, and Cara Howe, faculty members at the College of the 

Holy Cross, showed that the bracket itself is appropriately designed but its historical results 

reveal interesting anomalies among the seeds (Baumann, 2009). Baumann et al. astutely point 

out that the goal of tournaments is to incentivize each team to perform well in the regular 

season, presumably to better their odds of advancement come the postseason. In addition, the 

tournament structure favors higher-seeded teams so later round matchups are more likely to 

feature such teams. The results of the first round of the NCAA Tournament are relatively fair, 

with a uniform drop in advancement rate as the seed number drops. Beyond that, however, the 

seeding structure begins to break down, as the bracket is not reseeded in the event of an upset. 

As a result, 8 and 9 seeds, deemed better by the tournament selection committee, have a lower 

rate of advancement beyond the second round than 10, 11, and 12 seeds because those teams 

have a higher likelihood of facing less talented competition. This is a fault in the tournament 

structure, especially given the fact that each win in the tournament is worth money to each 

school’s conference. Therefore, 10 seeds are inherently more valuable to their conference than 

8 or 9 seeds.  
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NCAA Tournament Modeling 
 
 Much of the research surrounding the NCAA Tournament falls into two categories: 

modeling and prediction. Over time, the power of computers and increase in information have 

led to more sophisticated modeling capability. Some of the earliest work on modeling the 

NCAA Tournament was done by Neil C. Schwertman, Thomas A. McCready, and Lesley 

Howard. Schwertman et al. analyzed the tournament as a series of independent games with 

varying probabilities associated to each team (Schwertman, 1991). The team uses three 

models to interpret the tournament. Their first model states that P(i, j) = j/(i+j) where i is the 

number of the higher (better) seed in matchup and j is the number of the lower (worse) seed in 

the matchup. Thus the probability that the 1 seed would win the matchup against the 16 seed 

(an example of an opening round contest) would be 16/17. This model is basic and works best 

in early rounds but may overweight the ability of a 1 seed to win in later rounds. For example, 

a one seed would have a 66.7% chance of beating a two seed (2/3) but in all likelihood the 

matchup would be significantly tighter. Models 2 and 3 are similar in concept. Both assume 

linearity but differ in terms of the distribution of the quality of the teams. Model 2 assumes 

uniform quality of teams while Model 3 assumes a normal distribution (and uses z-scores to 

assess accuracy).  Model 3 is the most sophisticated of the group but is still far from useful. A 

normal distribution of team ranks is acceptable but does not take into account the fact that the 

64 teams in the tournament are not actually the best 64 in the country. Normalizing the 64 

teams in the tournament over-weights the abilities of the poorer competitors at the left end of 

the tail. After assuming that the 64 teams were in fact the best, the study found that Model 3 

was the best based on a chi-squared goodness of fit test. In addition to the aforementioned 

assumption about team quality, the study has a few other problematic assumptions. For one, 

the games are not necessarily independent. Schedules and previous team played are among 

the countless factors that determine how a team will play from game to game. The study also 

does not follow through to the Final Four; it is only used to determine the winner of each of 

the four regional subsets. Because seeds are used as the primary metric, it is impossible to 

predict later round matchups between teams of the same seed coming from different regions. 

Though problematic, this set of models formed a baseline for analysis of the NCAA 

Tournament and has been built upon over the years.  
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Schwertman went on to publish another study in 1996 with Kathryn L. Schenk and 

Brett C. Holbrook. In this rendition of their analysis, Holbrook et al. examined the tournament 

from the perspective of paths (Holbrook, 1996). Each team has a different path to winning 

their regional tournament based on their initial seed assignment (this thought is shared by 

Jacobson in later studies). The authors again worked under the assumption that the games 

were independent and also that the probabilities assigned to one team initially would stay 

constant from round to round. Models from Schwertman’s previous study were referenced in 

a comparative way as models nine, ten, and eleven (Schwertman, 1991). In addition, they 

included a new mathematical model based on the linear equation E(Y) = βo  + β1 (S(i) – S(j)). 

The other eight models were based on this linear equation and differed only in how the 

formula was constructed. Differences included the type of regression, magnitude of intercept, 

and independent variables. Like the earlier study, assigned weights to the teams was again a 

topic of debate. Because the study assumed linearity, the difference in quality between seeds 1 

and 3 would in theory be the same as the difference between seeds 14 and 16. Though logical 

in theory, this is unlikely in practice as there is minimal difference between lower ranked 

seeds but the gap between a great 1 seed and an above average 3 seed could be much larger. 

Models one and two work on this assumption while the remainder of the models assume a 

normal distribution of team strength. After modelling the results of a regional tournament, the 

results were applied to a chi-square goodness of fit test to check for overall model fit. The 

largest take-away from the chi-square test was how the models worked. Models that were 

useful in predicting single contests had less success in predicting the overall winner of a 

particular region. This study built upon the ideas from the prior study by incorporating more 

complicated modelling techniques and move beyond simple probabilistic models. Looking 

back on this study, the authors did the best they could with the data available but their efforts 

pale in comparison to more modern analyses of the tournament. Once again, they also failed 

to address the tournament beyond the regional tournaments as seeds were used as the focal 

points (Schwertman, 1996). 

 Also in 1996, statistician Bradley P. Carlin introduced his ideas of probability theory 

and regression into the analysis of the NCAA Tournament (Carlin, 1996). He acknowledged 

the efforts from Schwertman et al. and their NCAA regional probability matrix model for 
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determining regional winners (Schwertman, 1991). That being said, he is also keen on the 

inclusion of new data. For one, he included new and relevant data for the time, including the 

newly constructed RPI index, Sagarin rankings, as well as point spreads from US casinos. 

Both have their strengths. Rankings are able to alleviate the issue of having two teams of the 

same seed playing each other (i.e. two 1 seeds competing in the National Title game) by 

providing additional information beyond the seed. Point spreads are important because they 

are able to provide a real-time pulse on the state of a game. Setting lines requires analysis 

behind the scenes but the movement of lines dictates public sentiment about a team or may 

reflect a more recent trend or injury. Unfortunately lines for games in rounds beyond the first 

are not available at the onset of the tournament because the teams have not been determined. 

Carlin instead develops a method for determining the expected point spread for a given 

contest based on research from Stern (1991). The equation that he determined for a point 

spread still worked with seed values and is as follows: Yij= 2.312 + .100(j-i)2 where i is lower 

than j. The core of the formula was adopted from an earlier study on NFL point spreads. In 

terms of the application to the tournament itself, Carlin worked with several different models, 

each of which incorporated new information. The five models are as follows: Schwertman 

method (1991 edition), seeded regression (similar to Schwertman, only uses seeds for 

assigning probabilities – thus is only useful for regional tournaments), Sagarin differences 

(assigns the difference in Sagarin ratings as a theoretical point spread), Sagarin regression 

(adjusts the Sagarin differences using a regression model), and the Sagarin regression with R1 

spreads (same as the Sagarin regression except that the actual round one point spreads are 

used over the calculated ones). It was found that the Sagarin regression with R1 spreads was 

the best after calculating the results using a custom scoring formula. Carlin’s work is the first 

of its kind and moved beyond basic probability theory into the inclusion of outside sources of 

information. Nearly all modern projections and analysis live in rankings and polls, rather than 

the actual seeds themselves. There are so many differences between teams of the same seed 

that this is a necessary and appreciated step toward an analytically heavy approach. Carlin 

argues in favor of point spreads of computer rankings which is something to keep evaluating 

using more modern rating systems and approaches (Carlin, 1996).  
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 Prior to 2006, most of the NCAA tournament models relied on seeds and a logistic 

regression idea that one team would win and one team would lose. The results were on a 

binary. Paul Kvam and Joel Sokol continued with the binary idea but asked a different 

question in their research: given that team A beats team B, is team A actually the better team? 

(Kvam, 2006). Their model is known as LRMC, or logistic regression Markov chain. A 

logistic regression is a model that combines multiple variables into one result on a 0 to 1 

scale. In the case of the NCAA tournament a (0) would represent a loss for a given team and a 

(1) would represent a win. A Markov chain is similar to a logistic regression but is more 

complicated. Markov chains are used in stochastic modelling and describe a sequence of 

events in which the probability of each current event depends only on the state attained in the 

previous event. Therefore, in the case of the NCAA tournament, to reach the state of playing 

in a game, the team must have won the previous game (state). Kvam and Sokol explain their 

Markov chain using the following formula: tij = . The method is 

especially concerned with the home and away record of teams; Kvam and Sokol compared the 

results from hundreds of home and home series to construct their formula. The preliminary 

formula for all NCAA games (not solely tournament ones) included a constant value, 

especially a boost to the home team in a given matchup. Because the NCAA tournament 

games are played on a neutral site, the constant was removed for the final result. LRMC was 

shown through numerous tests, including number of projected tournament wins over a six 

year span as well as number of total points in a number of bracket pool type simulations, to be 

the superior method when compared to using coaches’ polls, Sagarin, Massey, seedings from 

the tournament committee, or a series of other standard rankings metrics. The method was 

only close to point spreads because point spreads can react in real-time to events that happen 

close to games – injuries, fatigue, trends, etc. Kvam and Sokol emphasize the ability of their 

model to assess the close games where other models may be lacking. Kvam and Sokol 

conducted several tests on their data and showed impressive results (Kvam, 2006).   

Skipping ahead a few years to 2013, there was a blog post on the Minitab website that 

aimed to revoke LRMC’s dominance of the NCAA prediction realm. Authored by Kevin 

Rudy, a sports analytics blogger from Minitab, the post argues that while LRMC is a fine 

predictor of NCAA tournament games, the Sagarin predictor ratings are actually the superior 
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standard. Rudy tests the predicted probabilities of the LRMC, Sagarin, Pomeroy, and Massey 

ratings against the observed results for each games and charted the differences. While Sagarin 

was not perfect by any means, its margin for error was significantly smaller than that of 

LRMC in two of the five categories (10 percentage point bands from 50-100 that showed a 

team’s likelihood of winning against whether they actually won). There are a few problems 

with Rudy’s work. For one, he is basing this comparison off of a single tournament. He also 

showed a conclusion that the 2013 version of LRMC was worse than its 2012 counterpart 

despite a smaller sample size of games – he does admit this fact but the increased variation in 

a smaller sample is noteworthy. This source could arguably show very little meaningful work 

but may address a larger theme of NCAA tournament prediction: it is difficult. None of the 

models are perfect and the results from each may fluctuate wildly from year to year. Ideally 

that would not be the case but it is certainly possible as Rudy demonstrated with the stark 

differences in LRMC from 2012 to 2013 (Rudy, 2013).  

In 2012, John Ezekowitz of The Harvard Sports Analysis Collective introduced yet 

another form of analysis to the bracket (Ezekowitz, 2012). Ezekowitz focuses heavily on the 

perceived differences between the NCAA tournament and the NCAA regular season. Most 

ratings systems attempt to discover which team was the best in the regular season and then 

apply those findings to the tournament. Ezekowitz built a network of teams from a given 

tournament, connecting those who had played each other and finding results. In theory, a team 

that played more NCAA tournament caliber teams during the regular season would perform 

better than like seeded teams who had not. An economist by trade, Ezekowitz drew from 

sociology and used a Cox Proportional Hazard model. Hazard models focus on time-to-event 

analysis, i.e. time before a team loses. They “survive” so long as they keep winning 

tournament games. Therefore, the number of tournament wins is the dependent variable. 

Independent variables for this particular iteration of a hazard model include offensive and 

defensive ratings, strength of schedule, experience, and consistency. All of the variables were 

significant but the law of diminishing returns does apply at a point. Improvements in one 

variable will mean more for a lower ranked team than they will for teams that are already 

great. The model outperformed both the Pomeroy team rating system as well as 

“TeamRankings”, a model that compiles proprietary rankings with public opinions (it is 
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geared toward tournament betting pools). Ezekowitz’s research supports a popular narrative 

that teams with a greater strength of schedule are likely to have more tournament success. The 

notion of being “tested” and having such experience is supported by schools from more 

developed conferences (i.e. ACC, SEC, Big 12) having more tournament success. However, 

working contrary to this point, there are a number of mid-majors from smaller conferences 

that have gone in notable tournament runs in the past. This speaks to the randomness of the 

NCAA tournament model. The single-elimination format lends itself to a degree of 

randomness. One bad night for a favorite or one stellar night from an underdog can lead to the 

inevitable upset (Ezekowitz, 2012).  

The penultimate prediction system was develop by the team at fivethirtyeight.com. 

Their tournament projections are my personal favorite and one of the leading reasons for this 

project in the first place. Jay Boice and Nate Silver from FiveThirtyEight built a live updating 

model that factored in a number of ratings systems already discussed to this point: their 

proprietary ELO system, ESPN’s BPI, Jeff Sagarin’s “predictor” ratings, Ken Pomeroy’s 

ratings, Joel Sokol’s LRMC ratings, and Sonny Moore’s computer power ratings (Boice, 

2015). Beyond the computers, they also include some human “voices.” There has been no 

research to this point as to how the composite rating system has done in comparison to its 

individual pieces but it is likely successful. This research will form the basis for my own 

simulation model. It weights all of the systems equally so there may be some room for 

improvement in terms of weighting the probabilities in each matchup. 

Power of Seeds as Predictors 
There are other modeling studies that are worth noting but lack the sophistication of 

LRMC, Sagarin, Pomeroy, or Massey. That being said, despite the lack of sophistication, their 

results are useful for this analysis. For the simulation models, seeds were used as the 

predominant team identifiers so it is worthwhile to examine literature that focuses on seeds 

rather than the individual teams that inhabit them. In 1999, Bryan L. Boulier and H.O. Stekler 

asked the question: “Are sports seedings good predictors?” (Boulier, 1999). Fascinating 

question given that data today allows for deeper analysis of that question. In 1999, however, 

their method had to be simple and low on data. At a high level, the duo found that ranking did 

correlate with winning percentage in men’s and women’s basketball as well as men’s and 
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women’s tennis. Boulier and Stekler chose a probit regression for their analysis, which is 

essentially the same as a logistic regression. Both operate on a {0, 1} scale but depend on a 

different underlying distribution. In a probit regression, the normal distribution is used 

whereas a logistic distribution fits the logistic regression model. Brier scores are used to 

determine the mean-square error. From there the authors looked at the predicted and actual 

results by comparing victories based on the magnitude of the difference in seeds. For 

example, it was expected that 91.5% of the time, a seed that is 13 spots better than another 

would win, i.e. 1v14, 2v15, or 3v16. That actually happened 95.4% of the time. In all the 

difference in magnitude of the seeds was deemed significant at the .054 level. Boulier and 

Stekler took a better approach than Schwertman et al. because they relied on the difference in 

seeds rather than the seeds themselves to conduct their study. They also had another sport and 

multiple years of data to back up their work which proves that the concept does not merely 

work in isolated circumstances (Boulier, 1999).  

 A decade later, Sheldon H. Jacobson was also concerned with the use of seeding as 

predictors (Jacobson, 2009). This work is even more interesting in some ways because 

ranking systems had cemented themselves as useful by this point. Jacobson, who is a 

professor at the University of Illinois-Urbana Champaign, worked with co-professor Douglas 

King on an analysis of seeding in the NCAA tournament. Their work fills a gap in prior 

research and deals largely with late-round matchups. Remember that early work like 

Schwertman did not work on any matchups beyond the regional finals because there was no 

feasible or explored way to rank two one seeded teams (Schwertman, 1991). Jacobson and 

King bring up an excellent point about the audience of mathematical modelling for predictive 

purposes. Large numbers of viewers are looking for better ways to predict the games for 

either enjoyment or financial purposes. Interestingly, as models become more successful, they 

may also get more complicated and become less accessible as a result. The authors recognize 

that simply picking the higher seeded team to win each game is simple, satisfying, and 

effective – for the first few rounds. They work only with higher seeds and hypothesize that the 

predictive value of high seeds decreases as the tournament goes on. This supports the research 

of Boulier and Stekler who found that increasing the margin between seeds in a matchup 

increases the likelihood that the higher (better) seed will win (Boulier, 1999). The authors 
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recognize a number of issues including small sample sizes in certain matchup pairings and 

lack of independence in the result of same-seed matchups. The methodology of the study uses 

the t-test and compares the results to a baseline “toss-up” where each team has a 50% chance 

of winning. Through a t-test (including Bonferroni adjustment) and ANOVA testing, 

Jacobson and King found that there is a difference in the results of a matchup between two 

highly seeded teams (one, two, or three) in the later rounds. Each seed has powerful predictive 

power in early rounds but in rounds four, five, and six the power is negligible. It would be 

understandable to randomly choose winners in such matchups rather than relying on seed 

number as a predictive force. Understanding that there is a bit of a small sample size problem 

entwined in the results, the final conclusion is worth noting. Because so many of the prior 

studies are concerned with seeds and prediction, it is meaningful to understand at what point 

in the tournament the higher seed recognition-type selection method becomes questionable. 

According to Jacobson and King, any round after the Sweet Sixteen is a glorified coin flip in 

higher seeded matchups (Jacobson, 2009).  

 Jacobson conducted additional research on the NCAA Tournament and seeding in 

2011 (Jacobson, 2011). In this study, Jacobson aimed to compare the historical performances 

of the various seed distributions in each round of the tournament. He worked with the 

assumption of a sufficient amount of data (over 1,600 games) and a random sample of games 

(those 1,600 would roughly be a representative sample of all possible tournament outcomes). 

His methodology was not one seen previously. Instead of turning to regression as many of his 

contemporaries had done, Jacobson worked with the geometric distribution. A geometric 

distribution is made up of common and nonnegative discrete random variables and is defined 

as the number of independent Bernoulli random variables until the first success occurs. 

Moving forward, Jacobson groups the potential seeds for a given round into subsets. For 

example, in round one the subsets follow the pattern {1,16}, {2,15}, etc. Because there a 

finite number of seeds in the tournament history dataset, the geometric distribution can be 

truncated down. For each set j in round r, P{Zj,r = ti,j,r} = kj,rpj,r(1- pj,r)i-1 where i is the position 

in the set, j is the set in the round, and r is the round in the tournament. The probabilities of a 

particular seed combination are found by taking the product of each seed appearing in the 

round and multiplying by the number of permutations for the combination. The distribution 
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fits the Elite Eight and onward better than early rounds. That being said, this source may not 

be the most useful of the group. While it builds upon Jacobson’s prior research, it does not 

explicitly predict which teams are likely to advance. The model will, however, predict which 

set of seeds is likely to advance (Jacobson, 2011). 

Alternative Playoff Structures 
Introduction 

 Beyond the single elimination format, there are a few other playoff models in use in 

sports today. It is important to recognize that playing the NCAA tournament in any other 

format would be somewhat of a logistical nightmare, as there are academic, arena, television, 

and flight schedules to plan and accommodate. The tournament already runs for three weeks 

as it is and any additional gameplay would extend the tournament to an unfeasible point for 

student-athletes. That being said, there is a consideration that the tournament is too random 

and that it does not fairly crown a champion at the end. The tournament’s single-elimination 

format, as mentioned previously, leaves avenues for luck and chance where skill should be. 

Other sports, such as baseball and professional basketball, use multiple game series and 

smaller tournament formats use a double-elimination schedule. Both attempt to alleviate the 

randomness of single game result.  

Double Elimination 

Christopher T. Edwards from the University of Wisconsin-Oshkosh researched the 

double-elimination format. Edwards presents the double-elimination format as a combination 

of two single-elimination brackets (Edwards, 1996). Once a team loses a matchup in the 

winner’s bracket, they are dropped into the loser’s bracket and must win out from there. 

Edwards pulls in the preference matrix from Schwertman (Schwertman, 1991) in his 

explanation of probability pairings. He then goes on to discuss the probability of winning a 

double-elimination tournament. There are three ways for the tournament to end: first, the 

winning team from the winner’s bracket defeats the winning team from the loser’s bracket in 

their first matchup; second, the winning team from the winner’s bracket loses the first game 

against the winner from the loser’s bracket but then defeats them in the second game; third, 

the winning team from the loser’s bracket defeats the winning team from the winner’s bracket 

twice. In terms of determining probability for the winners, Edwards looks at both determining 
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the structures and the draws for teams in the double-elimination format. This source is heavy 

on mathematical theorem and proof but not in a useful way. Much of the work that Edwards 

does is in setting up a bracket and determining the draws by using permutation rather than the 

implementation and simulation of such a tournament. As background, this is useful source but 

there is little use beyond that (Edwards, 1996).  

Multi-Game Series 

 Beyond the double-elimination format, there are also multi-game series. H. Maisel 

conducted some early work looking at series of varying length i.e. k games needed to win a 2-

k-1 length series (Maisel, 1966). The research pertinent to this paper comes from his first two 

sections, which examined the expected length and variance of a series of varying length as 

well as a method for determining the optimum number of k games needed to win a series. 

Maisel used data from the Major League Baseball World Series from 1922-1962 to inform his 

processes, splitting the data into two groups: the first had a probability of team A winning at 

.55 and the second with the probability of team A winning at .67. From there he projected the 

length and variance of a series involving those conditions with decent success. After that, 

Maisel introduced and equation and conditions for picking the optimum number of games, k, 

that should be required to win a series. The equation incorporates a number of cost variables 

alongside the probabilities of each team winning a given series to determine the optimum 

number of victories required. Maisel’s analysis, while useful, is perhaps one step removed 

from the work being conducted on this project. That being said, it is useful theoretical 

material to be applied as a baseline for applied methodology.  

Furthermore, Richard A. Groeneveld and Glen Meeden worked with conceptual 

material surrounding multiple-game series in 1975 (Groeneveld, 1975). The authors use sports 

as a means of introducing elementary level statistics so the analysis is at a low level but is 

instructive. Any multi-game series is the outcome of a series of multiple independent trials 

(games) where one team has a probability, p, greater than or equal to 1/2, of winning each 

game. The authors put forth a model that fits parameters for a series that goes either 5 games 

or 7, but must assign a conditional probability in the event that the series goes 6 games. They 

are especially looking into teams that are trailing after 5 games forcing a game 7. It is worth 

noting that probability theory has advanced from this point and things like the geometric or 
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binomial distribution could be easily applied to this analysis. The winner of a seven game 

series is the summation of C(6,3)* (p)3(1-p)3 *p. This probability theory will be applied to a 

multi-game series simulation in this project (Groeneveld, 1975).  

 Christopher Rump from Bowling Green State University expanded on coverage of a 

seven game series in 2008 (Rump, 2008). His work introduced Markov chains to a seven 

game series. This is sensible given that each game in the series would be in a different state 

(i.e. team up 1-0 is entirely different from being up 3-2) so the analysis at each state should be 

different. The goal of his analysis was to group the transition probabilities into clusters; to do 

this he used binary optimization. Despite the high level of mathematical analysis, their results 

were sensible: the best partition was to split the data into groups when the team with home 

field advantage was winning and then all other situations. Adding additional partitions to the 

data increases the fit but becomes more cumbersome in terms of usefulness (Rump, 2008).  

 During the 2002-2003 season, the NBA shifted the first round of the playoffs from a 

five game series to a seven game series. Will McMillan of The Harvard Sports Analysis 

Collective covered the early results from the National Basketball Associations’ change in 

playoff structure (McMillan, 2010).  McMillan mentioned that the primary motivating factor 

for the shift was eliminating the volatility in matchups of high and low seeds (1v8, 2v7). To 

compare the results of the shift, McMillan analyzed the series results from the eight years 

before and after the change. He did not compare like seeded matchups against one another 

because the NBA also changed the formula for seeding during the same period. In the eight 

years under the five game series, higher seeded teams went 49-15. In the seven game series 

format, higher seeded teams went 52-12. A small sample size comment is necessary here but 

the finding is somewhat significant. Given more chances, there is a slight improvement in the 

quality of the team that advances. McMillan does bring up a good point that while the results 

encourage round to round advancements, playing longer series may have unforeseen long-

term effects on a team. Dominating and winning in four games is preferable to grinding out a 

seven game series. Expanding McMillan’s work into a 64 team scenario will provide a larger 

sample of data for testing his hypothesis about upset reduction (McMillan, 2010).  

Probability and Multi-Game Series Length 
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 The next group of sources confronts the changing of the length of a series and the 

subsequent effect that change has on the two teams involved. Salisbury State University 

mathematics professor E. Lee May, Jr. addressed this issue in 1992 by examining the 

probability equations for three, five, and seven game series. May, Jr. was concerned with 

validating whether or not seven game series were actually fairer than five game series (May, 

1992). He assumes that games within a series are independent events in the construction of his 

mathematical models. He “warms up” by discussing a three game series before moving on to 

the more complex models, five and seven games. May, Jr. uses binomial models and 

derivatives to find the point at which the seven game series is fairer than the five game series. 

After subtracting the two equations, he finds that a seven game series is most advantageous to 

a better team when they have a 69% chance of beating their opponent, with about a 4% higher 

chance of winning a seven game series rather than a five game series. In May, Jr.’s 

estimation, the 4 percent margin is not enough to deem the seven game series explicitly fairer. 

His analysis will be useful for comparing the mathematics behind each series length. May 

Jr.’s graphical representations of the functions involved are key to understanding the material.  

 Brian Dean, also of Salisbury University, performed more complex analysis in 

comparing series length in 2007 (Dean, 2007). Whereas May, Jr. assumed that all games 

where neutral site, Dean introduced additional probability to account for home-road splits. In 

his model, there were four conditions: road win, road loss, home win, and home loss. To 

compensate for the extra conditions, Dean created a road multiplier factor that would be 

applied to a home favorite when playing road games – the average multiplier from the 

timeframe he examined was .89476. In addition to series length, Dean had to be concerned 

with the order of games within each series so that the probabilities could be properly applied. 

Dean found that teams with at least a 53.77% of victory in a series benefited from a move 

from a three to five game series. Likewise, teams with at least a 53.37% of victory in a series 

benefited from a movie from a five to seven game series. That being said, Dean found that the 

difference between series length, after factoring for home field advantage, was still 

insignificant. He brought up morale and momentum as potential factors to examine further. 

Dean’s analysis is interesting because he claims that there is not enough of a difference in 

winning expectation to consider a seven game series fairer than a five game series. This point 
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is worth analyzing more, as even a small difference played out hundreds of times would have 

an effect.  

General Reflection 

 Predicting the NCAA Tournament is an immensely difficult task because of the sheer 

number of games and influencing factors. Early researchers like Schwertman (Schwertman, 

1991) and his contemporaries looked at the tournament in a linear fashion, using seeds as 

predictors. This idea was furthered by Carlin (Carlin, 1996) and Boulier and Stekler (Boulier, 

1999), who also worked with the power of seeds as predictors. Carlin also introduced 

advanced metrics into his equations to feed a more comprehensive model. That being said, 

these early models had limitations from being seed based. It was impossible to predict 

matchups beyond the regional finals because the seeds could have been the same in some 

matchups. Over time, the amount of data available to tournament researchers have grown, so 

too have their models. Kvam and Sokol’s logistic regression Markov chain is arguably the 

best model as a standalone predictor (Kvam, 2006), though other researchers have argued for 

Sagarin. Though some models have been successful individually, the top model to this point 

has been the one put forth by Nate Silver and his team at FiveThirtyEight (Boice, 2016). Their 

model does an excellent job of combining powerful computer models with human influences 

(essentially checks and balances). This model is unproven in an academic sense but would 

appear to be the most powerful because of the aggregation across sources. The technique is 

similar to what Silver uses for political predictions. Weighted averages across sources 

attempts to reduce biases and outliers from an individual source in order to present the most 

fair and reliable model possible. 

 The mathematics behind other playoff structures does exist but is less intricate than the 

NCAA tournament. Edwards did excellent research on the double-elimination format which 

will be useful in that event that we create brackets from scratch and need to design a bracket 

based on an abnormal number of teams and draws. There is a fair amount in literature about 

the change from one structure to another, which McMillan (McMillan, 2010) covers in his 

work on the NBA and May, Jr. (May, 1992) and Dean (Dean, 2007) address with theoretical 

series length expansion. There was a slight improvement in the records of higher seeded 

teams given more games in the series. H. Maisel worked in the 1960s on analysis of multiple-
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game series, or as he referred to them 2k-1 length series (Maisel, 1966) – his results were not 

entirely clear but his successors addressed multiple-game series in a more pronounced way. E. 

Lee. May, Jr. used binomial probability models in comparisons of three, five, and seven game 

series. That analysis was then followed up by Brian Dean, who factored home-road splits into 

May, Jr.’s work. Both men demonstrated no significant differences in increasing the length of 

a series from five to seven games. That hypothesis will be tested via simulation. 

STUDY AND ANALYSIS 

Data Collection 
The primary data for this analysis come from an array of sources. Data on the NCAA 

tournament was compiled from a site devoted to tracking historical results across sports, 

MCubed (MCubed, 2017). Information pertinent to this project centered on the historical 

records of a particular seed against all other seeds; this data formed the baseline for the 

simulation models. For example, we were interested in the fact that a 1 seed has a 38-33 

record against a number 2 seed, historically. A sample of the data is attached as an Appendix 

D. 

 Likewise, data was sourced similarly for the National Basketball Association 

(RealGM, 2017) and for Major League Baseball from (Baseball Reference, 2017). 

Unfortunately, data was not already formatted in a seed v. seed format. Therefore, data was 

collected on each individual series and then compiled into a format similar to the NCAA. 

NBA data was collected from 1997-2016 and Major League Baseball data was collected from 

1995-2016 with the introduction of the first Wild Card.  

 Additional NCAA data was collected on the historical expenditures made by each 

NCAA Men’s Tournament team in the past 10 seasons, 2007-2016 (“Equity”, 2017). The 

United States Department of Education’s Office of Postsecondary Education publishes annual 

reports detailing expenditure, coaching numbers, and a multitude of other data around all 

NCAA colleges and their athletic programs. Called “Equity in Athletics Data Analysis”, the 

data is publicly provided. For each year, schools with a team in the NCAA Men’s Tournament 

were pulled and attributed their seed from that year’s tournament. This process was repeated 

for 10 seasons until there was a 10 year average of the expenditure on the men’s basketball 
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program for schools at each seed level. There is a stark difference between 1 seeds and 16 

seeds, as expected because more successful schools are likely to have invested more money in 

the program. 1 seeds average over $9.9 million in expenditure whereas 14, 15, and 16 seeds 

all average less than $1.9 million in expenditure. These lower seeded teams are often 

automatic qualifiers from smaller conferences who advanced by winning their conference 

tournament. They did not need to be better than larger, national programs; they simply needed 

to beat similarly sized and similar endowed schools. Higher-profile schools like Duke 

University and the University of Louisville spend enough money to skew the seed 

expenditures from year-to-year but a 10 year average helped to smooth these results.  

 Similarly, salary data was collected from 2007-2016 for all MLB and NBA playoff 

teams (“Spotrac”, 2017). In the NBA, there was a fairly uniform drop-off in salary 

expenditure from the 1 seed to the 8 seed. For Major League Baseball there is no correlation 

between seed and salary expenditure.  

 Then, we sourced data for the most current value of the “unit.” A vague term, a unit 

represents the payout given to a team’s conference every time a team wins in the NCAA 

Tournament (Final Four and National Title excluded). In 2017, each unit is worth $264,859 

(Smith, 2017). While this amount may seem paltry for a large school like Duke or Louisville, 

its value stacks over time. Each unit is maintained by the conference for six years, so units 

won in this year’s tournament are actually held until 2023. The conference continues to profit 

from this year’s success, as the value of the unit itself adjusts upward slightly each year. 

Therefore, one win in the 2017 Tournament is worth just over $1.7 million to the conference 

in the next six years. A single school can win up to five units in a given year before the 

NCAA caps their winnings. This “win unit” only applies to the NCAA Men’s Tournament 

and there is no NCAA-sponsored payout for the Women’s Tournament (Zimbalist, 2016). 

 Playoff payout data was uncovered for Major League Baseball and the National 

Basketball Association as well. The formulas and distributions of each playoff pool are 

different. In Major League Baseball, the playoff pool is the summation of a portion of the 

playoff gate receipts: 50% of the Wild Card round, 60% of the first three games of the 

Division Series, and 60% of the first four games of both the League Championship Series and 

World Series. For context, the 2016 playoff pool was worth roughly $76.6 million (Kleps, 
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2016). This money is subsequently distributed to the teams. In order to reward success, the 

percentage share of the pool increases with each series victory. Therefore, the distribution is 

as follows: 36% for the World Series winner, 24% for the World Series loser, 12% each for 

the two LCS losers, 3.25% for the Division Series losers, and 1.5% for the Wild Card losers 

(Kleps, 2016).  

 For the NBA, their playoff pool is 

smaller and awards money for both regular 

season and playoff performance, unlike 

Major League Baseball which heavily skews 

toward playoff finish (understanding that 

regular season finish may guarantee not 

playing in the Wild Card game, which would 

guarantee a slightly larger cut regardless). 

There are financial rewards for having the 

best record in the league and the conference. 

Rewards are also paid out for teams as low as sixth in the standings. From there, teams are 

rewarded for their final result in the playoffs. Similar to baseball, basketball teams received 

more money for a better final finish (Gerenger, 2016). 

Methodology 
In general, the analysis for each of the sports is the same. This skeletal structure will 

be explained in the preliminary section before delving into the specifics of each sport. The 

primary method for this analysis was a simulation in Microsoft Excel using VBA macros to 

process thousands of runs through various playoff scenarios. Simulation is a powerful tool 

because it allows for complex processes to be simplified into probabilities. For each 

tournament (NBA, NCAA, and MLB), simulations were built to run their respective formats. 

Each model includes functionality to run a one game playoff series, as well as 3-, 5-, and 7-

game series as many times as the user specifies.  

 Win probabilities were assigned to each team based on their historical win/loss record 

against a particular seed. For example, in the NCAA tournament, an 8-seed has won 52.6% of 

their matchups against a 9-seed in the opening round. Relying on this historical data, in the 8-

Figure 1: NBA Payout Conditions 



The Value of a Win: Analysis of Playoff Structures 
Senior Capstone Project for Matthew Orsi 

- 21 - 

seed v 9-seed matchup, the 8-seed would have a win probability of .526 and the 9-seed would 

have the remainder at .474. From there, the simulation determines the relative percentage of 

that team winning the matchup. In general this formula is an interpretation of the Bill James 

log5 formula:  

 

This formula incorporates all possible outcomes in a matchup into a concise probability. The 

formula takes the two conditions by which the higher seed can win – either that team wins or 

their opponent loses – and divides it by the total probability of all outcomes. 

In most cases, the default relative percentage is the historical winning percentage of 

the higher seed in the matchup. However, in cases where the data is unavailable or the 

matchups have only happened a handful of times (rendering them statistically insignificant), 

the above formula is substituted. This case is particularly likely in the case of the double-

elimination NCAA Tournament model. In giving some teams a second chance, a number of 

matchups are created that do not happen organically throughout the single-elimination 

bracket. The most glaring case is any matchup involving a 16 seed. In the Men’s Tournament, 

a 16 seed has never advanced so they have no history against any other opponent. Therefore, 

it would be illogical to assign a .99999/.00001 probability split in the matchup for something 

there is no precedent for. From there, the number of games needed to win the series, the 

relative (or historical) winning percentage, and a random number – using the Excel RAND() 

function – are fed to a binomial inverse. The number of games in the series represent the 

number of trials to be conducted. The relative winning percentage is the probability of a 

success in a given trial. Lastly, the random number (between 0 and 1) is the probability of the 

Cumulative Binomial Distribution. The inverse function returns the smallest number of 

successes for which the cumulative binomial distribution is greater than or equal to a given 

probability. Because the probability assigned is random, the number of games returned is also 

random, a whole number ranging from 1 to 7. If the games returned is equal to 4, 5, 6, or 7, 

the higher seed in the matchup wins and moves on in the simulation. However, if the games 

returned equals 1, 2, or 3 then the lower seed in the matchup moves on. This process is 

assigned to each matchup in the bracket and can be run conceivably an infinite number of 

times – the only limitations are time and Excel computational power. Similar processes are 
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used for one, three, and five game series, just with lower thresholds for games required to win 

the series. The champion from individual simulation is stored in an Excel macro and the 

summation of titles are returned to the worksheet when the total number of simulations 

specified have run. 

Simulation Results 
Our initial hypothesis was that increasing the length of the series would therefore 

increase the likelihood that higher seeds would win more championships. Increasing series 

length decreases the variance in results by multiplying the better team’s win probability 

multiple times over. In a non-mathematic sense, this hypothesis holds water. The expansion of 

a series like the NCAA Tournament, in which the baseline is one game, would eliminate the 

“one good night” or “one bad night” style upsets where the better team has a critically bad 

night or the worse team has the night of their lives. This has intrigue all its own but reduces 

the likelihood of engaging, high-profile matchups down the line. To reiterate, the expectation 

is that increasing the series length will increase the title odds for the high seeds in the 

tournament. This hypothesis is supported by the analysis of May, Jr. (May, 1992) and Dean 

(Dean, 2007).  

NCAA Men 

   
Figure 2: NCAA Men's Basketball Championship Probability 



The Value of a Win: Analysis of Playoff Structures 
Senior Capstone Project for Matthew Orsi 

- 23 - 

The NCAA Tournament is a series of one game series as it stands right now. Under that 

model, a 1 seed would win the title approximately 53% of the time. As the number of games 

increases, that percentage follows suit. The effect of an expansion of upwards of seven games 

really only affects 1 seeds, which see a 17% spike in title odds. 2 seeds, by contrast only see 

their odds increase by 4% despite additional contests. Other seeds see their odds decline to 

under 5% by the time the playoff series reach 7 games.  

NCAA Women 

 
Figure 3: NCAA Women's Basketball Championship Probability 

The NCAA Men’s and Women’s Tournaments both use the same 64 team format but 

the results of their simulation are drastically different. The talent distribution in each of the 

tournaments becomes clearly apparent when the simulation results are visualized. There is 

greater parity, or breadth of talent, in the men’s game which leads to smaller spreads in 

matchups. In the women’s game, however, the talent is concentrated in the hands of a few 

powerhouse programs: University of Connecticut, Baylor University, Stanford University, etc. 

1 seeds in the women’s tournament have higher title odds in a one game series than their male 

counterparts do in seven games. If the series were to be increased to five or seven games, the 

combined odds of a seed 3 or lower winning a championship fall below 1%. That would all 

but make it a virtual lock for one of the top eight teams in the tournament to win the title.  
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NBA 

 
1. Figure 4: NBA Championship Probability 

As a star driven league, it is not surprising that the National Basketball Association 

favors its high seeds heavily. Teams that perform well in the regular season are rewarded with 

better seeds in the playoffs and typically easier roads to the Finals. It is hard to beat talented 

teams in seven games series. Remember that unlike the NCAA tournaments, the NBA already 

uses a seven game model so this chart must be viewed from right to left. To increase the upset 

potential, the NBA would really need to drop back to a three game series as there is little 

difference between five and seven game series when it comes to broadening the array of 

potential champions.  
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MLB 

 
Figure 5: MLB Championship Probability 

Major League Baseball is by far the highest parity league of the ones we examined. 

There is an 11% increase in title odds for 1 seeds from one to three games but their odds level 

off for the remainder of the series expansions. There is actually little change in the odds 

across all seeds which speaks to the variability of the results in baseball playoffs. Another 

interesting observation is that the odds for a 4 seed, typically the Wild Card team, are 

drastically higher than the 3 seed which was not observed in other sports. This result indicates 

that it is more beneficial to be the Wild Card team than it is to be the weakest division winner.  

Regression Results 
NCAA 

 The first step in calculating the regression for the NCAA regression was finding the 

average number of wins for each seed over the course of all of the simulations. Excel 

functions were used to calculate the number of wins by each seed for the NCAA Men’s 

Tournament. A COUNTIF() function was used to count the number of the times the seed won 

in the first four rounds. Rounds five and six (Final Four and National Title game) were not 

included as they do not contribute to the potential winnings distributed by the NCAA. From 
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there, these win totals were summed by seed and then divided by the number of simulations. 

Lastly, the average number of wins per seed per simulation was divided by 4 as there are 4 

representations of each seed in each tournament (one for each region).  

 The next piece to the method is to incorporate the expenditure data from the Office of 

Postsecondary Education with the “units” to be won in each game. As mentioned previously, 

we derived the average expenditure by seed by aggregating data from the OPE. In order to do 

so, we manually extracted the total expenditure that each school reported on their men’s 

basketball program from the years 2007-2016. For each year, we crosschecked the official 

bracket, found all 64 teams, and added their seed alongside the expenditure total. Then, all of 

that data was brought into a single Excel sheet and aggregated into a 10 year average 

expenditure by seed.  

 We placed the total value of each unit at (6 * current year’s value) to incorporate the 

increase in value over time as well as the subsequent discounting in value because of time 

value of money. Therefore, the $264,859 unit won by each team in 2017 would be worth 

$1,589,154 total in 2017 dollars. Remember that each unit is distributed to the conference, not 

the individual team that won. Therefore, we made an adjustment to properly attribute the 

value of the win back to the school that actually won the game. Conference size in the NCAA 

varies, ranging from 8 teams in its smallest conference to 14 in its largest conference. There 

are 351 teams spread across 32 conferences in Division I, which makes for an average of 

about 11 teams per conference. Therefore, the average winnings per seed is: 

  (Average Wins Per Seed * Total Unit Value)  / 11 

The final piece of the analysis was a linear regression equation. The Y-variable is the 

expected winnings for each seed while the X-seed is the average expenditure by each seed 

over the last 10 years. This simple linear regression model shows what the expected increase 

in winnings would be given an increase in expenditure on the men’s basketball program. The 

NCAA Men’s Basketball regression output is attached as Appendix E. 

As the results show, this simple linear model explained away about 78% of the error. 

In terms of analyzing the coefficient, there is a statistically significant result as demonstrated 

by a p-value less than .05. The regression equation reveals that in spending an additional 

dollar on a men’s basketball program, a school should expect to receive 5 cents back in return 
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through the NCAA win unit distribution. This is a fairly meager result but it is because of the 

nature of the distribution itself. Each win unit is given to the conference, not the individual 

team who earned it. That school only receives a fraction of the value – on average about 9.1% 

(1 in 11). 

 We intended to run a similar process for the NCAA Women’s Tournament but while 

the brackets themselves are the same structure, only the men’s schools can receive payouts for 

winning games. Andrew Zimbalist addresses this problem: “So the total value of a victory in 

the men’s tournament is approximately $1.56 million. By contrast, a win in the women’s 

tournament brings a reward of exactly zero dollars. That’s right, zero dollars” (Zimbalist, 

2016). There is no monetary payout for the women’s game at all. 

NBA 

 Likewise, it was a similar process for the National Basketball Association. Data was 

collected that accounted for the historical winning percentages, playoff winnings, and average 

salary expenditure. The vast majority of NBA matchups have occurred with a significant 

frequency so log5 was not used frequently. A process was created to count the times a seed 

advanced to a particular round in the playoffs so that the seed could receive the proper 

allocation of playoff pool money. The regression for the NBA used average seed salary as the 

independent variable and the playoff winnings as the dependent variable. The NBA regression 

output is attached as Appendix F. 

The results of the regression for the National Basketball Association are strong. The 

adjusted R-squared value removes roughly 44% of the error. On top of that, the coefficient 

associated with the 10-year average salary is significant. For each additional dollar that an 

NBA team spends in salary, they can expect to receive 55 cents back in NBA playoff 

winnings. This has implications when it comes to roster construction. Teams are far more 

likely to spend money on key free agents if they are likely to receive such a high percentage 

of that investment back from playoff winnings. 

MLB 

 Major League Baseball, as with the previous sports, follows a similar method. Data 

was collected on playoff matchups since the introduction of the first Wild Card in 1995, along 

with the 10-year salary average for each seed and the expected playoff bonus pool for the year 
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2016. Similar to the NBA, a process was created that counted the number of times a seed 

advanced to a particular round in each simulation. That way, the proper cut of the playoff pool 

would be allocated to them. For the linear regression, the independent variable was the 10-

year average salary by seed and the dependent variable was the expected share of the playoff 

pool. The MLB regression output is attached as Appendix G.  

The Major League Baseball results are insignificant for two reasons. For one, there is 

a lack of fit for this linear model as demonstrated by a 24% adjusted R-squared value. In 

addition, the p-value is .29, well above the threshold of .05. Had the results been significant, 

the impact of spending salary would have been monumental. Teams could have seen upwards 

of 83 cent return on a dollar of salary. This result is not particular surprising given that teams 

with $200+ million in salary have made the playoffs but so have teams with $30 million. The 

10-year average helps to smooth out some of these outliers. This result also speaks to the 

randomness of the baseball playoffs in general. This demonstrates there is little correlation 

between money spent and final playoff result. 

CONCLUSION 
The goal of this analysis was two-fold. The first goal was to quantify the impact of 

potential changes in the number of games for an array of major sports playoff systems. The 

second goal was to compare the financial expenditure of individual athletics teams with the 

playoff winnings in each sport’s system. 

What we aimed to do is visualize what most people would inherently believe to be 

true. Using a combination of simulation and probability theory, we demonstrated that across 

three play-off models, an increase in the series length would increase the championship odds 

for the best seeds in the respective tournaments. NCAA Men’s Tournament 1 seeds increased 

their odds by 17% from one game series to seven game series; the women increased theirs by 

18% in the same window. NBA teams followed a similar trajectory to the NCAA women but 

it is important to remember that the league is already using seven game series; so the decrease 

in title odds for a one seed from seven games to one game series is 24%. Lastly, Major 

League Baseball 1 seeds obtain an 11% advantage in increasing from one game to three game 
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series but that gain levels out in five and seven game series. Regardless of the sport, there is 

an observed increase in the title odds for the high seeds. 

 On top of that, we analyzed the financial implications of each of the playoff rewards 

systems on the teams participating within them. To do this, we used linear regression models 

with the expected playoff winnings as the dependent variable and expenditure data (in the 

form of either school spending or salary) as the independent variable. The NCAA Men’s 

model and the NBA were both significant; NCAA teams saw a 5 cent return while NBA 

teams saw a 55 cent return. Major League Baseball results were not statistically significant 

with a p-value greater than .05. Unfortunately, it was not possible to create a regression 

equation for the NCAA Women’s Tournament because there are no payouts from the NCAA.  
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APPENDICES 
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Appendix A – NCAA Men’s Basketball Bracket 
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Appendix B – MLB Bracket 
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Appendix C – NBA Bracket 
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Appendix D – NCAA Seed Grid 
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Appendix E – NCAA Men’s Basketball Regression Results 
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Appendix F – NBA Regression Results 
 

 



The Value of a Win: Analysis of Playoff Structures 
Senior Capstone Project for Matthew Orsi 

- 37 - 

Appendix G – MLB Regression Results 
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