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Abstract

This thesis presentation presents a stochastic approach to portfolio
construction using various risk metrics as underlying models for portfolio
optimization. The risk models utilized in this thesis include Mean-Variance,
Minimum-Variance, Value-at-Risk (VaR), Conditional Value-at-Risk
(CVaR). To evaluate the efficiency and overall performance of these models,
historical data for 30 specific stocks was selected. The stock selection
process focused on the selecting stocks that are highly volatile and
correlated with one another. Empirical results reveal that portfolio
optimization strategies outperform the benchmark. Additionally, results
showed that the Minimum-Variance model constructed the best portfolio
for the predetermined backtesting time period.

Keywords: Portfolio construction models, empirical analysis, stochastic
models, portfolio optimization.
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1 Notation

Ri = Return of an asset(i) at time tt+1

Rp = Return of a portfolio
ri = Adjusted return profile of an asset (i) at time tt+1

rµ =Average returns of asset (i) for a given time range
n = Number observations in data set
σi = Standard deviation of an asset (i)
σp = Standard deviation of a porfolio (p)
ρi,j = Covariance between asset (i) and asset (j)
N = Number of assets
xi = Investment amount of asset/stock (i)
dt = max{0, ϕ−

∑N
i=1 ritxi

σ = Standard deviation of returns for an investment (i)
D1 = Dividend at time tt+1

Rrf = Return of a risk-free investment (usually 10-year T-Bill)
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2 Introduction

The goal of portfolio optimization is to allocate funds to an asset following
some objective and relevant parameters. An asset, or investment vehicle, is
anything from stock and bonds, to real estate and foreign currencies.
Typically, optimizers focus on maximizing factors of expected returns, while
minimizing costs or financial risk. Harry Markowitz is considered the
founding father of modern portfolio management theory. His work on
portfolio selection in the 1950s set up the analytical framework of portfolio
selection and optimization.To understand the mathematical models
proposed by Markowitz, the following underlying concepts must be
considered.

2.1 Risk and Returns

Consider a financial asset with an initial price of p0 dollars at the time of
purchase. That same asset at time tt+1 will now have a price of p1 dollars.
Therefore, the return profile for that specific financial asset can be calculated
as:

Ri =
p1 − x0
p0

Additionally, since this paper is concerned with publicly traded companies
i.e. equities, one must consider the effect of dividends (D1) on the price of
the stock. The adjusted price of a stock, over given time period, is therefore
given by:

ri =
p1 − x0
p0

+
D1

p0

Furthermore, consideration must be given to the risk incurred as a result of
investing in an asset (i). Financial literature states that the risk of an
investment can be measured by its variance (σ2), and consequently the
standard deviation of returns:

σ =

√∑
(ri − rµ)

n− 1

2.2 Porfolio Construction

The considerations for risk and return become important when constructing
a portfolio of financial assets. As a result, consider a set of random financial
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assets N = 1,2,3. . . n. For a given time frame, we can make the argument
that these assets generate the following returns:

ξ = (ξ1, ξ2, ξ3, ...ξn)

However, because of the budget constraint, an individual is only able to
invest a specified amount on a given portfolio. Therefore, it is up to his/her
discretion on how they would allocate or distribute their funds among a set
of financial assets.Fund allocation is therefore described as the weight (as a
percentage of the total funds) allocated to each asset in a portfolio. This is
represented by the following equation:

w = (w1, w2, ...wn)

In the 1950s, Harry Markowitz pioneered and developed the analytical
framework for portfolio selection. He stated that the returns of a portfolio
can be categorized as the total returns of the individual financial assets,
relative to the funds allocated to each asset [1].

Rp =
N∑
i=1

wiξi (1)

Additionally, Markowitz classified the risk of a portfolio as the covariance
between the returns of an asset (i) and the returns of an asset (j) multiplied
by their relative standard deviations. Therefore, the risk of a portfolio can
be categorized as:

σp =

√√√√ N∑
i=1

N∑
j=1

σiσjρij (2)

2.2.1 Mean-variance optimization

Based on the Markowitz equations for risk and return, we are able to set up
an optimization problem that allows us to calcculate the optimal porfolios
with the best risk-adjusted returns. The mean variance optimization model
is described as:

min

N∑
i=1

N∑
j=1

σi,jxixj
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s.t.
N∑
i=1

wiξi = rp

N∑
i=1

wi = 1

0 ≤ wi ≤ 1,∀i
The mean-variance optimization model, will enable us to calculate what the
optimum portfolios are, at a given level of risk. Plotting each individual
portfolio on a risk vs.return graph, will enable us to show the efficient frontier,
or the Markowitz Efficient frontier. Figure 1 shows an example of an efficient
frontier.

Figure 1: Efficient Frontier

2.2.2 Minimum-Variance Optimization

Another optimization model that will be utilized in this paper, is the
minimum variance model. This model seeks to optimize for porfolios that
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are the least volatile i.e. have the lowest risk, and therefore, lowest
standard deviation (σ), without regard for optimizing based on portfolio
returns. The minimum variance model can be described as:

min
N∑
i=1

N∑
j=1

wiwjσi,j

s.t.

N∑
i=1

wiξi = rp

2.2.3 The Optimal Portfolio: Sharpe Ratio

Alternatively, William Sharpe’s work on the Sharpe Ratio allowed an
investor to identify the best risk-adjusted returns, relative to a risk-free
asset. The Sharpe Ratio is a measure that allows an investor to calculate
the excess returns that an asset (or portfolio) has earned, relative to a
risk-free investment, in terms of per unit of risk incurred [2]. Thus, in
mathematics, the Sharpe Ratio acts as the utility function for Markowitz’
efficient frontier. The Sharpe Ratio is given by:

SharpeRatio =
Rp −Rrf

σp
(3)

Using the Markowitz model we are able to calculate the optimal portfolios at
each risk level. However, optimizing for the Sharpe Ratio, allowed an investor
to identify the portfolio that had the best risk-adjusted returns, relative to
a risk-free asset. This optimization can be described as:

max
Rp −Rrf

σp

s.t.
N∑
i=1

wi = 1

0 ≤ wi ≤ 1,∀i
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2.2.4 Application

To understand how these optimization models work, I have retrieved three
years worth of adjusted returns for five companies: Apple (AAPL), J.P.
Morgan (JPM), Exxon Mobile (XOM), Honeywell (HON), and Procter &
Gamble (PG). These companies will have different return and risk profiles.
Applying the optimization models for the return and risk profiles of these
companies allows us to create the Markowitz Efficient frontier. This can be
seen in Figure 2.

Figure 2: Efficient Frontier – Application with 5 financial assets

Additionally, Figure 2 highlights the minimum variance and max Sharpe
portfolio. It must be noted that all the portfolios under the efficient frontier
are considered inefficient because they are not able to provide suitable
risk-adjusted returns.

The benefits of optimizing portfolios for better fund allocation can be
highlighted when the individual risk-return profiles for each company are
plotted on the efficient frontier curve. This allows us to understand how
diversifying a portfolio’s holdings can lead to better returns at a lower risk.
Figure 3 shows the Markowitz Efficient Frontier, and the individual risk and
return profiles for the companies listed at the beginning of this section.

For example, Figure 3 shows that an investor that has 100% fund allocation
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Figure 3: Efficient Frontier and Individual Risk & Return Profiles

in J.P Morgan can earn better returns than the optimal portfolio. However,
the investor achieves these returns at a significantly higher risk. In this
example, the expected return of the Sharpe portfolio is 17.97% and a standard
deviation of 0.17. Whereas J.P Morgan has returns of 19.70% but a standard
deviation of 0.21. Therefore, the optimal portfolio can reduce the risk, while
maximizing the returns of the portfolio. The optimization yields the following
weight recommendations Apple: 32%, J.P Morgan: 43%, Exxon: 0.91%,
Procter & Gamble: 0.07%, and Honeywell: 23%.

2.3 Additional Risk Metrics

2.3.1 Value-at-Risk (VaR)

Value-at-Risk (VaR), just like variance and standard deviation, is another
method for measuring/estimating the potential loss of investment. VaR
estimates the value that might be lost on an investment, given a confidence
interval (α), for a specific time period. Artzner et. al. provided the general
definition for VaR [3]. For a given α ∈ (0, 1), VaR is defined as:

V aRα(X) = − inf{x ∈ R : Fx(x) > α}

V aRα(X) = min{c : P (X ≤ c) ≥ α}[10] (4)

F−Y 1 = (1− α)[4]
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It is important to note that this paper assumes that returns of the companies
follow a normal distribution (r ∼ N(µ, σ2)). Thus, the VaR of the returns
of a portfolio can be visually represented in Figure 4. The curve in Figure

Figure 4: Distribution of Returns & Value-at-Risk

4, represents the distribution of returns for a given portfolio. Assuming that
it has a mean (µ) of 1 and a standard deviation (σ) 1. Therefore, the area
to the left of the VaR represents the potential loss of investment given a
confidence interval of α. Typically, confidence intervals are set at 1%, 5%
and 10%. This approach to modelling risk was first introduced following a
report from the Basle Committee on Banking Supervision, in 1996 [5]. J.P
Morgan created one of the more precise definitions for VaR in 1996, saying
that “VaR answers the question: how much can I lose with x% probability
over a given time horizon” [6][13]. At this point, it must be noted that the
confidence interval that will be used in this paper is 5% (α = 0.05).

2.3.2 Conditional Value-at-Risk (CVaR)

The final risk model that will be explored in this paper is Conditional
Value-at-Risk (CVaR). CVaR is similar to VaR, in the sense that they
measure expected losses of a financial asset or portfolio of assets. However,
CVaR has superior mathematical capabilities, and it is considered to be a
coherent risk measure. CVaR can account for losses that exceed VaR. This
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second-order quantile measure was explored by Artzner et. al. [3],
Rockafellar and Uryasev [7], and Ogryczak [8].

CVaR, also known as Expected Shortfall (ES), can be defined as the
maximum expected loss of a portfolio for a given period of time under a
confidence interval (α). Rockafellar and Urasev [7] showed that CVaR can
be mathematically defined as

CV aRα(X) = − 1

α
[E(X ∗ 1{x≤−V aRα(X)})− V aRα(X)(α−

P (X ≤ −V aRα(X))]

CV aRα(X) = − 1

α

∫ α

0

V aRp(X)dp (5)

Hu and Zhang [9] set up the optimization of CVaR as the following: “Suppose
that the rate of return is a discrete random variable for each stock, then the
CVaR optimization model can be described as follows:”

min { 1

α

T∑
t=1

dtpt − ϕ}[9]

s.t. dt ≥ ϕ−
n∑
i=1

ri,jxi, t = 1, ..., T

dt ≥ 0, t = 1, ..., T
n∑
i=1

rixi ≥ ρM0

n∑
i=1

xi = M0

Here pt represents the probability of this event occurring given specific
scenarios and ϕ represents an ‘unbounded auxiliary variable’, which equals
V aR(α).

Therefore, the visual representation of the efficient frontier for a CVaR and
VaR portfolio based on optimization can be seen in Figure 5. This figure was

Page 13



A Stochastic Approach to Portfolio Optimization
Honors Thesis for Juan P. Gonzalez

retrieved from a paper written by Vinay Kaura from the Imperial College
London, where portfolio optimization for value-at-risk is investigated. It
must be noted that they used an confidence interval of 99% (α = 0.01).

Figure 5: Efficient Frontier for VaR and CVaR Porfolio, as per optimizations
done by Vinay Kaura [10]

2.3.3 Application of VaR & CVaR Optimization

If we refer back to the companies in section (2.2.4), and apply the
optimization models for CVaR and VaR, we are able to generate an efficient
frontier similar to that shown in Figure 5. Figures 6 and 7, highlight the
minimum VaR and minimum CVaR Portfolios, respectively. Figure 6 shows
the efficient frontier for the V aR(α) portfolios, and Figure 7 shows the
efficient frontier for the CV aR(α) portfolios.

Page 14



A Stochastic Approach to Portfolio Optimization
Honors Thesis for Juan P. Gonzalez

Figure 6: VaR Efficient Frontier – Application

Figure 7: CVaR Efficient Frontier – Application

To summarize, VaR provides an investor with a range of potential losses for
a specified confidence interval, while CVaR measures the average expected
loss. Looking at Figures 6 and 7 we can see that predicted losses for VaR are
larger than those predicted by the CVaR model. Since VaR is not a coherent
risk measure, these differences could be attributed to CVaR being a coherent
risk measure.
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2.3.4 Coherent Risk Measures

Artzner et. al. [3] pioneered the development of coherent risk measures, in
their paper “Coherent measures of risk”. In this paper, it is argued that for
a risk model or measure to be coherent, they have to satisfy a set of
axioms. For a risk measure to be coherent, it has to show normalization,
monotonicity, sub-additivity, positive homogeneity, and translation
invariance. Consider a risk measure (ρ):

Axiom 1. Normalization The normalization axiom states that the risk of
nothing is zero.

ρ[0] = 0 (6)

Axiom 2. Monotonicity ([3, p. 210] Monotonicity) This axiom states
that a portfolio with greater future returns will have lower expected losses.
Consider two random variables X and Y that represent losses, then:

X ≤ Y −→ ρ(X) ≤ ρ(Y ) (7)

Axiom 3. Sub-additivity ([3, p. 209] Sub-additivity) This axiom states
that diversification reduces the risk of a portfolio. The risk of two portfolios
added together, cannot be greater than the individual risk of each standalone
portfolio.

ρ(X + Y ) ≥ ρ(X) + ρ(Y ) (8)

Axiom 4. Translation Equivariance ([3, p. 209] Translation
Equivariance) This axiom states that an increase in losses (c) will increase
risk by the same amount.

ρ(X + c) = ρ(X) + c (9)

Axiom 5. Positive Homogeneity ([3, p. 209] Positive Homogeneity) This
axiom states that growing the size of a portfolio by a factor of λ, will increase
risk by the same amount.

ρ(λX) = λρ(X) (10)

VaR is not considered to be a coherent risk measure since it does not meet
the sub-additivity axiom, axiom 3. [11]
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3 Empirical Analysis

3.1 Data Selection

The portfolio selection pool is constructed of all the stocks currently found
in the PSI - Invesco Dynamic Semiconductors ETF [12]. One of the goals of
this paper is to analyze how these optimization models perform with highly
volatile and correlated underlying assets. Thus, limiting stock selection to
one sector ensured that the return profiles of the selected stocks would be
highly correlated with one another.

Furthermore, the stocks found in the PSI ETF are overweight low volatility,
which enabled me to conduct analysis on the effects of volatility on the
optimizing models. There was a total of 30 stocks selected. The data was
collected from the 3rd of March 2017 until the 3rd of March 2020 (3 years).
The data showed daily prices for each one of the companies. The PSI ETF
will be used as the benchmark for backtesting.

Additionally, the 10-year US treasury rate was used as the risk-free asset.
This allows the optimizing model to identify the optimal portfolio. The data
was collected for the same time period and using the same frequency i.e.
daily.

3.2 Expected Returns

Expected Returns were calculated based on a series of research reports.
Using FactSet Market Research, I retrieved implied target prices for all the
companies in the PSI [14]. The same implied target prices were selected
from Morningstar Research [15] and ValueLine [16]. An average of implied
target prices was used as the expected returns.

3.3 Computational Methods

Using the equations described in Section 2, a stochastic simulator was
created using Jupyter Lab. The Python code was set up so that random
weights were generated, which would allow for calculation expected
portfolio returns and portfolio standard deviation. The simulation was run
250,000 times i.e. 250,000 different portfolios were generated. This allowed
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for a more accurate calculation of optimal and minimum variance portfolio.
The python optimizer then produced the weights for both the optimal,
minimum variance, minimum VaR, and minimum CVaR portfolio.

Using the Quantopian platform, these weights were incorporated in a buy-
and-hold - long-only - strategy, and the model was backtested for 2 years.
The Quantopian platform provides performance metrics that were used to
determine which optimization model yielded performed better, relative to
the benchmark (Invesco PSI).

4 Results

4.1 Mean-Variance & Minimum-Variance Porfolios

Using the Markowitz optimization model, the python optimizer was able to
compute the returns and standard deviations for 250,000 portfolios.
Additionally, using the Sharpe Ratio as the utility function, I was able to
identify the optimal portfolio given the data inputted into the model. Also,
the optimizer found the minimum variance portfolio. The weight
allocations for these portfolios were stored for use in Quantopian
backtesting platform. This information can be seen in Figure 8.

Figure 8: Markowitz Efficient Frontier using the 30 Stocks in PSI

Thus, looking at figures 9 and 10 we can see how the mean-variance and
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minimum variance models, respectively, distributed the allocation of funds
amongst the companies in the PSI.

Figure 9: Weight Allocation Mean-Variance Optimal Portfolio Vs. PSI Index

Figure 9 shows that the Sharpe ‘Optimal’ portfolio allocates more weights
to the companies on the right-hand side of the figure. In contrast, the index
ETF portfolio allocates weights more heavily towards big names such as
AMD, TXN, and INTC.

Figure 10: Weight Allocation Minimum-Variance Portfolio Vs. PSI Index

Conversely, as Figure 10 show, the minimum variance portfolio spread the
fund allocation more evenly across the 30 companies. There is greater weight
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allocation towards companies in the ‘middle of the pack’. The minimum-
variance portfolio only allocates more than 5% to one company: ICHR.

4.2 Value-at-Risk & Conditional Value-at-Risk
Portfolios

The optimization equations defined in earlier equations were also used to
generate the efficient frontier for the returns of portfolios, relative to the
VaR and CVaR of each portfolio. Again, the simulation was run 250,000
times, and thus, generated 250,000 portfolios. Figure 11 and 12 show the
efficient frontier for VaR and CVaR optimization models.

Figure 11: VaR Efficient Frontier using the 30 Stocks in PSI

One of the interesting findings between these two optimization models was
the dispersion of inefficient portfolios. Figure 11 shows that there is a
broader range of inefficient portfolios, while Figure 12 shows that these
portfolios are more tightly packed along the frontier. The parameters for
both optimization models were the same, yet they yielded significantly
different distribution of portfolios. While I am still investigating the
possible cause of this, I believe that because VaR provides a range and not
an average, then there is a broader possibility of outcomes. However, this
not clear at this moment.
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Figure 12: CVaR Efficient Frontier using the 30 Stocks in PSI

Furthermore, the weight allocations of each model are significantly different
from one another. The distribution of weights among the 30 semiconductor
companies can be seen in Figure 13 and 14.

Figure 13: Weight Allocation VaR Portfolio Vs. PSI Index

Figure 13 shows that a total of eight companies received weight allocations
that were greater than 5%. This is significant since the PSI only allocates
5% or more to only five companies. Furthermore, there were a total of
four companies that were allocated less than 1%. Similar to the minimum-
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variance portfolio, weights are heavily allocated toward the middle of the
pack.

Figure 14: Weight Allocation CVaR Portfolio Vs. PSI Index

Figure 14 shows a great deviation from the PSI ETF weight allocations.
IPHI was the one company that the model did not allocate any weight to.
Furthermore, 11 stocks had weight allocations greater than 5%, and eight
stocks had weight allocations of less than 1%.

4.3 Backtest & Results

As mentioned in section 3, I created a backtesting model that followed a
buy-and-hold (long-only) strategy that invested based on the weights
allocated to them by the optimization model. As a result, I backtested the
data for a total of 2 years, from 23/03/2018 until 23/03/2020. The
Quantopian algorithm took the weight allocation profiles from each one of
the optimization models and backtested the model.

The performance metrics used to assess the performance of the
optimization model, relative to the benchmark, by measuring Total
Returns, Alpha, Portfolio Beta, Sharpe Ratio, and max drawdown. Table 1
shows the results of running the backtest.

Performance metrics show that the minimum variance model performs
better than the other models. This model generated significant
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outperformed in measures of alpha, returns, Sharpe, and drawdown. The
alpha measures the returns of the portfolio relative to the benchmark.
Positive alpha shows that the model outperforms the benchmark, while
negative alpha shows that the model underperformed the benchmark.
Furthermore, drawdown shows the maximum observed loss, from peak to a
through. Therefore, models that can generate lower maximum drawdown
figures are said to be more risk-averse.

A note about timing:

At the time of making the backtesting algorithm, I did not take notice of
potential issues that may arise as a result of investment timing. Therefore,
I backtested the model using information that was included in my original
dataset. Thus, the overall results may not accurately reflect the
performance of the optimization model.

However, I have run the models setting the starting date as the date in which
the expected returns were calculated. Therefore, there are no timing errors in
the results of the optimization model. However, this means that the models
can only be run for just over a month. For the results to be significant,
the model would have to be tested against at least 6 months of future data,
before being optimized again. This is a consideration that I will keep, and
will potentially add as an adjustment at a later date. This can be seen in
Table 2. It seems to suggest that the Sharpe portfolio is the best porfolio,
but not enought data has been collected tp produce a coherent answer.
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5 Conclusion

In conclusion, this paper has shown that it is possible to use different risk
models to generate better returns than those generated by Exchange
Traded Funds. However, in this paper, there were no considerations of the
possible implications of transaction costs, and the effect they may have on
the alpha generated by the optimization method. In future studies, one
could explore the effects of transaction costs, and other real market
features, on the optimization models. This would enable an investor (most
likely a Portfolio Manager) to determine if they should just buy the ETF or
try their own investment method.

Furthermore, this paper does not address the implication of different
market phases. For example, one could make the argument that
risk-minimizing models are more likely to perform better in volatile and
bearish market, while the Sharpe mean-variance model is more likely to
outperform during a bullish market. This could be an interesting
consideration for future studies. Finally, the incorporation of timing into
the Backtesting algorithm is of crucial importance to the validity of results.
This paper will be updated in 5 months, to ensure that there are no timing
issues.
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