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An Empirical Comparison of Improvement Heuristics for the Mixed-Model, U-Line 

Balancing Problem 

 

Abstract  

Mixed-model assembly lines often create model imbalance due to differences in task times for 

the different product models.  Smoothing algorithms guided by meta-heuristics that can escape 

local optimums can be used to reduce model imbalance.  In this research we utilize the meta-

heuristics tabu search (TS), the great deluge algorithm (GDA) and record-to-record travel (RTR) 

to reduce three objective functions: the absolute deviation from cycle time, the maximum 

deviation from cycle time, and the sum of the cycle time violations.  We found that the GDA was 

significantly superior to the RTR and TS algorithms across all problem sizes and objective 

functions.  For the 19 task problems, RTR performed significantly better than TS for all three 

objective functions.  On the other hand, for the 61 and 111 task problems TS performed 

significantly better than RTR for all three objective functions. 

Key Words: Mixed-Model, U-Line, Great Deluge Algorithm, Record-to-Record Travel, Tabu Search      

1  Introduction 

The explosive growth of today’s information based society has led to an increased consumer 

awareness of the purchasing options available to them and has caused an increase in consumer 

demand for product variety.  This has put pressure on manufacturing firms to provide constant 

innovation as a way to remain competitive and has led to shortened product life cycles 

(Simatupang and Sridharan, 2002) and increased supply chain complexity in the trade-off 

conflict between inventory, transportation and warehousing costs versus customer service levels 

(Simchi-Levi, Kaminsky, and Simchi-Levi, 2000).  In an effort to meet the increase in demand 

for product variety in order to maintain or increase revenue and mitigate the negative effects of 

product variety, many manufacturers have altered their production processes to include the 
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tactical production strategies of mass customization and just-in-time (JIT).  On a company-wide 

strategic level, the integration of the firms supply chain improves the coordination of JIT and 

mass customization manufacturing systems, and allows for quicker response to changes in 

demand.   

 Adapting quickly to the market requires flexibility in both equipment and employees, and for 

manufacturers that utilize an assembly operation, a U-shaped line can offer advantages over a 

serial line layout (a straight line layout).  These include improved communication between 

workers and the ability to adjust the production rate by removing or adding workers (Monden, 

1998; Wantuck, 1989).  To meet the demand for product variety many manufacturers are 

converting their production lines from a single product or batch production to mixed-model 

production.  Benefits of mixed-model production are the ability to provide customers with a 

variety of products in a timely and cost effective manner (Sparling and Miltenburg, 1998).  This 

research utilizes a U-shaped assembly line layout for mixed-model production. 

 The optimal solution to the mixed-model, U-shaped assembly line balancing problem is 

dependent on both the assignment of tasks to workstations and the model sequence.  The mixed-

model assembly line problem requires solutions to the following two problems (Ghosh and 

Gagnon, 1989):   

1. The mixed-model line balancing problem:  How will tasks be assigned to workstations?  

2. The mixed-model sequencing problem:  In what sequence will units of different models be 

produced on the line? 

 This research focuses on the first problem, the assignment of tasks to workstations for a 

given sequence of models.  Three meta-heuristics methods are used to guide an algorithm that 

smoothes the initial balance of a mixed-model, U-shaped assembly line: tabu search (TS), the 
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great deluge algorithm (GDA) and record-to-record travel (RTR).  We test a variety of problem 

sizes and subtypes, and for each line that we smooth we minimize three objective functions. 

 Our paper is organized as follows.  In the following section 2 we review the relevant 

literature on U-shaped assembly line balancing.  We discuss our research methodology, objective 

functions and problem instances in section 3.  Next, in section 4, we describe the three heuristics 

utilized in this research and the selection of the algorithm parameters used in the empirical 

experiments.  In section 5 we state our research questions and present our empirical results.  In 

section 6 we conclude with a summary of our findings, discuss the limitations of our study and 

provide suggestions for future research. 

2  U-Shaped Assembly Line Balancing Literature Review 

A small, but rapidly growing, body of literature exists for U-shaped production lines, and the 

research can be classified into two groups: production flow lines and line balancing (Erel, 

Sabuncuoglu, and Aksu, 2001).  In line flow research the emphasis is on identifying critical 

design factors and their impact on the performance of the U-line.  In line balancing the objective 

is to minimize the cycle time, the number of workstations or in the case of the mixed-model U-

line, to smooth model imbalance.  Since the focus of this study is the U-shaped assembly line 

balancing problem (UALBP) with deterministic task times our literature review covers 

deterministic line balancing research.  For discussions on various aspects of line flow research 

see Aase, Olson, and Schniederjans (2004), Celano et al. (2004),  Chand and Zeng (2001), 

Cheng, Miltenburg, and Motwani (2000), Miltenburg (2000; 2001a; 2001b), Nakade and Ohno 

(1995; 1997; 1999; 2003), Nakade, Ohno, and Shanthikumar (1997), and Ohno and Nakade 

(1997).   
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 Miltenburg (1998) attributed the first discussion in the open literature in English concerning 

U-lines to Schonberger (1982) who noticed a preference among Japanese manufacturers for 

multiple U-lines, where workstations often spanned more than one U-line.  Additional early 

discussions of U-lines were by Hall (1983), Monden (1993) and Wantuck (1989). 

 Miltenburg and Wijngaard (1994) were the first to compare a U-shaped assembly line with a 

serial assembly line.  They used two methods developed for the traditional single-model, serial 

line ALBP to solve a Type-1 UALBP (given the cycle time c, minimize the number of 

workstations K).  An integer programming formulation to solve the Type-1 problem for the 

UALBP was presented by Urban (1998).  This formulation used a “phantom” network to move 

forward and backward through the network.  Other line balancing procedures for the UALBP 

include ULINO by Scholl and Klein (1999), U-OPT by Aase (2003), a shortest route formulation 

by Gökcen et al. (2005) and a goal programming approach by Gökcen and Ağpak (2006).  A 

genetic algorithm procedure to balance U-lines is presented by Ajenblit and Wainwright (1998), 

while simulated annealing is used by Erel, Sabuncuoglu and Aksu (2001) and Baykasoğlu 

(2006). 

 Miltenburg (1998) analyzed the U-line facility problem where a multi-line station may 

include tasks from two adjacent U-lines.  This extension of the basic single U-line is known as an 

N U-line facility, where N is the number of U-lines that are to be simultaneously balanced.    

Sparling (1998) and Chiang, Kouvelis, and Urban (2007) also investigated the multiple U-line 

problem. 

 The first mixed-model U-line balancing problem (M-UALBP) was addressed by Sparling 

and Miltenburg (1998).  They adapted the four-step mixed-model, serial-line procedure of 

Thomopolous (1967, 1970) and set the initial balance using a branch and bound algorithm 
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developed for serial lines.  A smoothing algorithm using a search procedure is then used to 

reduce the imbalance of the line for a given sequence of models.  Kim, Kim, and Kim, (2000) 

and Kim, Kim, and Kim (2006) applied genetic algorithms to the mixed-model, U-shaped line 

balancing and sequencing problem. 

3  Research Methodology 

One of the primary differences between serial lines and U-shaped lines in a mixed-model 

assembly environment occurs when a U-line has a cross-over station, and hence an operator can 

work on two different product models during the same production cycle.  This unique 

characteristic of a U-line layout increases the complexity of the mixed-model algorithm since the 

total task time in a workstation during a cycle may include work performed at both the front of 

the U-line and the back of the U-line.  We present our algorithm notation and then our three 

mixed-model objective functions to be minimized.  We base our notation on the work of Scholl 

(1999) and Sparling and Miltenburg (1998), and we make modifications specific to our 

representation of the problem.  We define the following notation. 

Inputs that are Fixed  

c  cycle time or launch interval (seconds) 

I  number of tasks, index i = 1, …, I   

K  number of workstations, index: k = 1, …, K   

M  number of product models, index: m = 1, …, M  

Nm  number of units of product model m in the sequence 

S  number of cycles, index: s = 1, …, S  

 ∑
=

=
M

m
mNS

1

 

tim  processing time of task i on product model m 
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mf
s
k  product model produced on the front of workstation k at the s-th cycle 

mb
s
k  product model produced on the back of workstation k at the s-th cycle 

Inputs that are Variable 

IFk set of tasks at workstation k located on the front of the U-line 

IBk set of tasks at workstation k located on the back of the U-line 

Calculation 

Tks amount of work assigned to workstation k at the s-th cycle   

 ∑∑
∈

+
∈

=
IBi

imb
IFi

imf
k

s

k

k

s

k

ttT ks
 

The inputs IFk and IBk are variable because the smoothing algorithm swaps tasks between 

workstations in an attempt to reduce model imbalance.  Only feasible swaps are accepted, and if 

so then Tks is calculated for each workstation for each model cycle.  

 In our research we minimize three mixed-model deterministic assembly line balancing 

objective functions.  The first objective function is the sum of the absolute deviation from cycle 

time (ADC) and it was first introduced by Thomopolous (1970) for a serial line layout.  Recently 

it has been tested empirically by Bukchin (1998) for a serial line layout, and for a U-line layout 

by Sparling and Miltenburg (1998) and Kim, Kim, and Kim (2000; 2006).  Our second objective 

function is the maximum deviation from cycle time (MDC) (Scholl, 1999).  Our third objective 

function is the sum of the cycle time violations (SCV) (Scholl, 1999; Sparling and Miltenburg, 

1998).  To our knowledge, neither the MDC nor the SCV have been tested empirically in a U-

line layout.  For our three mixed-model objective functions we again base our notation on the 

work of Scholl (1999) and Sparling and Miltenburg (1998), and we make modifications specific 

to our representation of the problem.  We define the following objective functions: 

ADC: sum of the absolute deviation from cycle time 
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Objective 1:  Minimize  |c|  ADC Tks

K

1k

S

1s

−=∑ ∑
= =

  

MDC: maximum deviation from cycle time 

Objective 2:  Minimize  |}cTmax{|MDC ks −=   

SCV: sum of the cycle time violations.   

Objective 3: Minimize  ∑ ∑ −=
= =

K

1k

S

1s
ks c)T(0,max    SCV  

 For each simulation we run to minimize an objective function we record the initial and final 

objective function values.  In the next section we discuss the minimum part set which directly 

impacts the number of cycles (S) that the objective functions evaluate.  

3.1  Minimum Part Set and Unique Sequences 

 Solution approaches to the mixed-model assembly line balancing problem use either the full 

part set (Thomopolous, 1970; Dar-El and Cother, 1975) or the minimum part set (Bard, Dar-El, 

and Shtub, 1992; Bard, Shtub, and Joshi, 1994; Kim, Kim, and Kim, 2000; 2006).  The full part 

set uses the total demand for each product model over the planning horizon (usually a single 

work shift).  Tasks times are based on a weighted average of the times to perform a specific task 

for each product model, which often results in fractional tasks times for computations.  The 

minimum part set (MPS) is the smallest part set having the same product model proportion as the 

total demand.  For example, if we produce three product models (Model A, Model B and Model 

C) and our total demand over the planning horizon is 60 units of Model A, 40 units of Model B 

and 20 units of Model C, we determine the highest common divisor for all three product model 

demands.  In this example that divisor is 20 and we divide the demand of each product model by 

20.  This gives 3 units of Model A, 2 units of Model B and 1 unit of Model C or an MPS of 321.  

Bard et al. (1992) point out that production schedules based on the MPS are more manageable 
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than a schedule based on the full part set, and that the MPS approach greatly simplifies 

computations.  In addition, McCormick et al. (1989) have shown that MPS based schedules 

quickly reach a steady state.   

 Thomopoulos (1967) shows that from combinatorial analysis the total number of possible 

product model sequences is: 

      
!...N!N!N

N!
  

CBA

 where N = NA + NB + NC + …, and  NA, NB, NC, … are the number of  

units of product models A, B, C, … to be produced.  In the above formula, the number of 

sequences increases as the number of product models and units of each product model increases.  

In the above example demonstrating the derivation of the MPS, our MPS of 321 has a total of 60 

possible sequences  [6! ÷ (3!*2!*1!)].  But, when using the MPS, only the unique sequences need 

to be evaluated.  The number of unique sequences for a given MPS is the total number of 

sequences divided by the total number of units in the MPS.  For our example, the number of 

unique sequences is 60 ÷ (3 + 2 + 1) = 10 unique sequences.  For an MPS = 111 (based on one 

unit each of product models A, B and C) there will be 3! ÷ (1!*1!*1!) = 6 sequences of which 6 ÷ 

(1+1+1) = 2 will be unique: ABC and ACB.  Sequences BCA and CAB are not unique since they 

are equivalent to ABC, and sequences CBA and BAC are not unique since they are equivalent to 

ACB.  In this research we test two unique sequences for a given MPS.  These sequences were 

selected by using Excel to assign a random number to each unique sequence and then selecting 

the two sequences with the lowest random numbers. 

3.2  Balancing Procedure Steps and Illustrated Example 

 Our balancing procedure for the mixed-model assembly line balancing problem is based on 

the four-step heuristic procedure proposed by Thomopolous (1967; 1970) for a serial line.  This 

procedure was used by Sparling and Miltenburg (1998) for the M-UALBP and hence provides 
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our motivation for using this procedure in our research.  Since the Thomopolous (1967; 1970) 

procedure uses the full part set, we will use a modified version to accommodate our use of the 

minimum part set.  A smoothing algorithm for the M-UALBP using the minimum part set is as 

follows: 

Step 1. For each task, multiply the task time for the product model by the number of units of   

  the product model in the sequence and sum the total task times for all the product    

  models.  This is our total task time for a task. 

 

Step 2. Merge each product models precedence diagram into a single precedence graph. 

 

Step 3. Multiply the desired cycle time by the total number of units of product models in the   

  sequence (S from our notation above) and use this value as the cycle time.  Solve a Type- 

  1, single-model assembly line balancing problem with the tasks and total task times from  

  Step 1 and the merged precedence diagram from Step 2.  In this research we use ULINO  

  (Scholl and Klein, 1999).  The solution is our initial balance.  

  

Step 4. Smooth the initial balance from Step 3 to reduce model imbalance using one of the three  

  objective functions previously presented.  Use the heuristic search techniques discussed   

  in the next section to prevent the smoothing algorithm from becoming trapped in a local  

  optimum by allowing exchanges that increase model imbalance. 

 

3.3  Problem Instances, Data Sets and Research Assumptions 

Scholl (1999) distinguishes between the problem (also called problem type) and problem 

instance for the assembly line balancing problem (ALBP).  Problem refers to the type of 

assembly line balancing problem to be solved and is based on the four primary ALBP 

classifications and the three objective function subtypes (Ghosh and Gagnon, 1989).  Problem 

classifications are single model or multi/mixed model with either deterministic or stochastic task 

times.  Objective function subtypes are: 

• Type - 1: given the cycle time c, minimize the number of workstations K. 

• Type - 2: given the number of workstations K, minimize the cycle time c. 

• Type - 3: minimize or maximize an objective function by varying c and K. 
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In our research the problem we are solving is the mixed-model deterministic ALBP in a U-shape.  

We initially solve a Type-1 objective function subtype and then through the smoothing algorithm 

we solve a Type-3 objective function subtype.  Minimizing one of our three objective functions 

also tends to minimizes the effective cycle time.   

 Problem instances are those specific values for all problem parameters and can be fixed or 

variable.  Fixed problem instances are those characteristics specific to a mixed-model data such 

as the number of tasks, the number of product models, the tasks times for each task for each 

product model, and the task precedence relationships for each of the product models.  Variable 

characteristics of a problem instance include cycle time, number of workstations, minimum part 

set (MPS), and the unique sequences associated with a specific MPS.  In this research we test a 

variety of these variables in order to cover a wide range of problem instances.   

 Three different data sets from the literature are used in this research and are shown in Table 

1.  The 19-Task, 3-Model data set can be found in Thomopolous (1970), and was used by 

Sparling and Miltenburg (1998) in a mixed-model, U-line layout example to demonstrate a 

smoothing algorithm.  In our research we multiplied all Thomopolous task times by 10 to 

eliminate fractional task times, which eased program verification.  The 61-Task, 4-Model data 

set comes from Kim, Kim, and Kim (2000) and the 111-Task, 5-Model data set comes from 

Arcus (1963).  Kim, Kim, and Kim (2000) tested all three data sets in their empirical study.   

Table 1 Experiment Data Sets 

Data Name Number  

of Tasks 

Number  

of Models 

Maximum Task 

Time (seconds) 

Code 

Thomopolous 19 3 15 T 

Kim 61 4 34 K 

Arcus 111 5 *6,615 A 
* Following Kim, Kim, and Kim (2000) the processing time for task 95 is changed from   

  33491 to 6615 seconds to allow for a larger number of workstations for a given cycle time. 
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 In our solution algorithm for the mixed-model, U-shaped assembly line balancing problem 

we make several assumptions.  Our assumptions come primarily from Sparling and Miltenburg 

(1998) since their research also focused on the M-UALBP and also from Thomopolous (1967; 

1970) and Scholl (1999).  The assumptions made in this research are: 

• precedence diagrams can be combined 

• task times are deterministic  

• task times may be different for different product models 

• each task type is assigned to only one station regardless of models 

• processing time equals task time 

• tasks may not be split 

• cycle time equals launch rate 

• the line is paced 

• workstations are closed 

• the workforce is multi-skilled and flexible 

• travel time equals zero 

• task locations are not fixed 

 4  Heuristic Development 

The heuristics we propose to test to reduce model imbalance are tabu search (Glover, 1977), the 

great deluge algorithm and record-to-record travel (Dueck, 1993).  All three heuristics will be 

implemented in an improvement formulation and we discuss them in the following sections. 

4.1  Tabu Search 

Tabu search is now a well known meta-search heuristic introduced by Glover (1977) that 

employs a search strategy to accept inferior solutions in order to escape local optimums.  Tabu 

search starts with a random, feasible solution to the problem and from this solution a set of 

neighboring solutions is generated.  A neighbor solution is generated through a pre-defined 

change (known as a move) to the incumbent solution such that the resulting solution is feasible.  

The quality of each solution is evaluated using a specified cost function and the best solution in 

the current set of neighboring solutions is selected as the new incumbent solution.  A new set of 

neighboring solutions is then generated and the process repeats until a stopping condition is met.  
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 Without modification, this process can become trapped in a local optimum.  Therefore, tabu 

search utilizes a flexible short-term memory of recent moves known as the tabu list.  With a tabu 

list, the selection of the new incumbent solution is the best neighboring solution according to the 

cost function whose generating move is not on the tabu list.  This strategy prevents backtracking 

into local optima and can force the acceptance of inferior solutions that might lead to better 

solutions.  The length of the tabu list is critical since it determines the length of time moves 

remain unavailable.  A list that is too long will restrict the moves available and a list that is too 

short will result in a cycling of solutions.  If a move on the tabu list results in a solution better 

than the best one so far, the move’s tabu status is ignored and the solution is immediately 

accepted.  This is known as aspiration criteria.   

4.2  The Great Deluge Algorithm 

The great deluge algorithm (Dueck, 1993) is based on the general purpose optimizing algorithm 

threshold accepting, which was first developed by Dueck and Scheuer (1990).  Threshold 

accepting in turn is based on simulated annealing, and though both heuristics have similar 

convergence properties, they have different acceptance rules.  The great deluge algorithm (GDA) 

is analogous to a person who needs to find the highest point of land during a deluge.  As the 

water level rises, the algorithm moves around the land (feasible region) until it reaches a high 

point.  The water rises according to a rain speed (labeled UP) which is similar to the temperature 

parameter in simulated annealing.  For the ALB problem, we want to minimize the imbalance 

between stations.  Therefore UP will be more like a leak rate and we will lower the water level.   

 The GDA starts with an initial feasible solution, and starting values for the rain speed 

parameter and water level parameter (initial objective function value), both of which must be 

greater than zero. A new solution is chosen based on a stochastic perturbation of the old solution 
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and the function value of the new solution is calculated.  If the function value of the new solution 

is greater than the function value of the old solution, the old solution becomes the new solution, 

the water level is decreased and the process repeats until there is no longer a cost decrease or 

until a specified termination point is reached.  If the new solution is less than the old solution, the 

new solution is kept, the water level is decreased and the process repeats.  The rain speed 

parameter is critical because it impacts both the computation speed and the quality of the results.  

If  UP is too high the algorithm works very quickly, but solution quality will be poor.  If UP is 

very low, then the solution quality will be much better, but the computation time will take longer 

(Dueck, 1993).   

4.3  Record-to-Record Travel 

Record-to-record travel (Dueck, 1993) is also based on threshold accepting (Dueck and Scheuer, 

1990) and it is very similar to the GDA.  The rate at which the water level changes is linked to 

the rate at which the solution improves.  The water level in the GDA becomes the value of the 

record (R) in record-to-record travel (RTR) and the rain parameter UP becomes the deviation 

parameter (D).  The selection of the deviation parameter affects the results the same way as the 

rain parameter.  The difference between the two heuristics is in the acceptance criteria.   

 Record-to-record travel starts with an initial feasible solution, and starting values for the 

deviation parameter and the record (initial objective function value), both of which must be 

greater than zero.  A new solution is chosen based on a stochastic perturbation of the old solution 

and the function value of the new solution is calculated.  Record-to-record travel has two types 

of acceptance criteria.  For a minimization problem, if the new solution is less than the record, 

then the old solution becomes the new solution and the new solution is now the record.  

Otherwise, if the cost of the new solution is less than the record plus the record times the 
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deviation [R + (R*D)], then the old solution becomes the new solution and the record is not 

changed.  A new solution is then generated and the process repeats until a stopping condition is 

met.  The best solution from all iterations is stored in memory and becomes the final solution 

when a stopping criteria has been met (Dueck, 1993). 

4.4 Motivation to Employ the Heuristics 

Tabu search has been utilized to solve a wide variety of research problems (Glover and Laguna, 

1997), while to the best of our knowledge we are aware of only two papers that test the GDA and 

RTR.  Dueck (1993) found GDA and RTR to be superior to simulated annealing for the traveling 

salesman problem and the problem of the construction of error-correcting codes.  Sinclair (1993) 

compared simulated annealing, genetic algorithms, tabu search, the GDA and RTR to the 

hydraulic turbine runner balancing problem.  Sinclair’s results showed that on a balance of ease 

of implementation, solution quality and solution times, the GDA and RTR performed most 

satisfactorily while tabu search provided the best solutions, but at the cost of long computation 

times.   

4.5 Parameter Experiment and Selection 

The length of the computation time and the quality of the solutions generated by the 3 heuristic 

algorithms depends primarily on the following key parameters.  The length of the tabu list (Tl) 

and the size of the neighborhood created (Nl) for tabu search, the  rain speed parameter (UP) for 

the GDA, the deviation parameter (D) for RTR, and the appropriate stopping criteria for all three 

heuristics.  A multi-level parameter experiment was conducted that tested 4 problem instances 

from each of the 3 data sets for each of the 3 objective functions.  Each problem instance was 

replicated 20 times.  We evaluated the heuristics parameter effect on computation time using the 
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Kruskal-Wallis test, and the heuristics parameter effect on solution quality using ANOVA and 

Tukey’s multiple pairwise comparison test.  All at a significance level of 0.05. 

 For tabu search the tabu list will be based on the number of stations and the number of tasks 

using the decrementing list of Scholl and Voβ (1996) as a guide.  For the three data sets the tabu 

lists to be tested are:   

 Thomopoulos 19: (K + I)/5, (K + I)/4, (K + I)/3 ⇒ (4, 5, 7)  

 Kim 61: (K + I)/12, (K + I)/10, (K + I)/8 ⇒ (7, 9, 12) 

 Arcus 111: (K + I)/15, (K + I)/12, (K + I)/9  ⇒ (8, 10, 16) 

 

 where K = # of stations and I = # of Tasks  

We generated neighborhoods by randomly selecting one task and creating a neighborhood of a 

various sizes using I/K as a guideline. For the three data sets the neighborhood sizes to be 

tested are:   

 Thomopoulos 19: ( (I/K)/ -1),  (I/K), ( (I/K) +1) ⇒ (4, 5, 6)  

 Kim 61: ( (I/K)/ -2),  (I/K), ( (I/K) +2) ⇒ (4, 6, 8) 

 Arcus 111: ( (I/K)/ -2),  (I/K), ( (I/K) +2) ⇒ (5, 7, 9) 

We also selected a fourth neighborhood size based on the simple formula I-1 where I is the 

number of tasks.  This fourth method allows us to create a neighborhood where the location of 

one task is swapped with each of the other tasks. 

 For the traveling salesperson problems (TSP) tested by Dueck (1993) using the GDA he 

proposed an UP parameter equal to 0.01.  Sinclair (1993) also uses an UP parameter equal to 

0.01.  Since the 3 problem sets we use in our experiments have a wide range of initial objective 

function values we tested the UP parameter at the following three levels: 0.01, 0.05, 0.10. 
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 For his tests of the TSP using RTR, Dueck (1993) does not provide information on the 

selection of the deviation parameter (D).  Sinclair (1993) uses a D equal to two times the 

“best_value” (Dueck’s Record).  This gives an acceptance function of E < 3*”best_value”.  We 

conducted small pilot runs for all three data sets and decided to test the following deviation 

parameters: 0.1, 0.3, 0.5 for the Thomopolous problems; and 0.005, 0.01, 0.05 for the Kim and 

Arcus problems. 

 For the GDA and RTR algorithms we tested two stopping criteria to terminate the search 

procedure: the maximum number of exchanges (N) without accepting a new best solution; and 

the maximum number of all exchanges (X).  We used the following stopping criteria: {(N = 

160*I, X = 260*I), (N = 90*I, X = 150*I), (N = 60*I, X = 100*I)}.  For tabu search we followed 

Sinclair (1993) and used the total number of iterations X as the sole stopping criteria (N=X) and 

set X such that the computation time for tabu search was close to the computation times for the 

GDA and RTR.  Based on a series of small experiments, we selected tabu search stopping 

criteria of 300 iterations for the Thomopolous problem instances, 400 iterations for the Kim 

problem instances and 600 iterations for the Arcus problem instances. 

 For tabu search the length of the tabu list did not have a significant effect on computation 

time or solution quality, while the neighborhood size had a significant effect on computation 

time and solution quality.  Across all problem instances and objective functions the largest 

neighborhood size (I -1) had the longest computation time and the lowest objective function 

values.  Using Tukey’s test we compared the 3 tabu lists lengths against the maximum 

neighborhood size and found that the middle tabu list was the most robust across all objective 

functions and problem sizes.  In our empirical research the neighborhood size was based on the 
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formula I-1 and the tabu list length was set at 5, 9 and 10 for the Thomopolous, Kim and Arcus 

problems respectively. 

  For the GDA parameter UP there were no statistically significant differences between UP 

and computation time, while the results were mixed for the effect of the UP parameter on 

solution quality.  For our stopping criteria we found that for every simulation run the algorithm 

stopped only after it had reached the maximum number of iterations (X) and that the highest X 

significantly impacted both computation time and solution quality.  The higher the X the longer 

the computation time and the better the solution quality.  In order to determine the impact of UP 

on solution quality we controlled for problem size and used Tukey’s test to compare UP against 

the highest X.  The results were mixed and not statistically conclusive.  However, across all 3 

objective functions, UP = 0.01 was the most robust for the Thomopolous problems while UP = 

0.10 was the most robust parameter for the Kim and Arcus problems, and therefore these 

parameters were used in the empirical experiments.   

 Our parameter experiment results for RTR were similar to those for GDA.  The deviation 

parameter (D) does not have a statistically significant effect on computation time or solution 

quality.  For our stopping criteria there were some RTR simulation runs that reached N without 

accepting a new best solution and therefore terminated the algorithm before X was reached.  

However, the stopping criteria had a significant effect on computation time and on solution 

quality. The higher the X the longer the computation time and the better the solution quality.  We 

used the Tukey’s test to compare D with the highest X and controlled for problem size in order to 

determine the impact of D on solution quality.  The results were not statistically conclusive.  

However, across all 3 objective functions, D = 0.3 was the most robust for the Thomopolous 
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problems while D = 0.01 was the most robust parameter for the Kim and Arcus problems, and 

therefore these parameters were used in the empirical experiments. 

 For the stopping criteria of our empirical experiments we dropped the maximum number of 

exchanges without accepting a new best solution (N) from our algorithms.  Stopping criteria was 

based on the maximum number of all exchanges (X).  We dropped N in order to ensure that there 

would be consistency in the number of possible solutions evaluated by each heuristic.  

Significantly more computing power became available and we increased the number of iterations 

for all 3 heuristics.  For the GDA and RTR X was set at 10,000 for the Thomopolous problems, 

30,000 for the Kim problems and 60,000 for the Arcus problems.  For tabu search X was set at 

600 for the Thomopolous and Kim problems and 650 for the Arcus problems.  These stopping 

criteria generated similar computation times for all 3 heuristics of approximately 2.7 seconds for 

the Thomopolous problems, 7 seconds for the Kim problems, and 28 seconds for the Arcus 

problems.     

5  Empirical Results 

The three data sets presented in Table 1 were used to generate a variety of problem instances 

based on the cycle time and the minimum part set.  In our empirical experiment we test the 

following problem instances: 28 Thomopolous, 24 Kim and 16 Arcus for a total of 68 problem 

instances.  For the Thomopolous problem instances we varied the cycle time from 15 to 20 

seconds which fixed the number of workstations at 4 and we used 5 different MPSs (231, 232, 

332, 225, 732).  For the Kim problem instances the cycle time ranged from 71 to 178 seconds to 

generate 6 or 12 workstations and we used 3 different MPSs (1211, 2121, 1324).  For the Arcus 

problem instances the cycle time ranged from 8100 to 10,300 seconds to generate 15 or 18 

workstations and we used 2 different MPSs (11221, 12312).  Parameters of the 68 problem 
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instances can be obtained by contacting the corresponding author.  Each problem instance is 

minimized by the three heuristics for three objective functions giving a total of 612 experiments, 

and each experiment is replicated 30 times.  Our simulations were conducted using MATLAB 

Version 6 running on a Gateway laptop with 256 MB RAM and 1.7 GHz processor.. 

 In our empirical experiments of the three heuristics we seek to determine if there is a 

dominant heuristic (best performer) across and within both the problem size and the objective 

function minimized.  We seek to answer the following three research questions in our empirical 

comparison.  For each of the three objective functions: 

1. Is there a dominant heuristic for each of the problem sizes tested? 

2. Is there a dominant heuristic for all of the problem sizes tested? 

For each of the three heuristic algorithms across the three objective functions: 

3. Is there a dominant heuristic for all objective functions minimized? 

Our answers to these questions will provide valuable insights into the performance of the three 

heuristics tested in this research to improve the efficiency of the M-UALBP.  

5.1  Heuristics Comparison for Problem Sizes 

In the following three sections we answer research question 1 and research question 2 for each of 

the problem sizes tested for the three objective functions.  For our analysis in MINITAB Release 

13.31 we use general linear model ANOVA with Tukey’s multiple comparison test and 

descriptive statistics.  We test the following hypotheses using the Tukey’s test at a significance 

level of 0.05 to determine if there is a heuristic effect on solution quality: 

  H0: The population distribution functions are identical 

  H1: At least one of the population distribution functions is different 
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5.1.1  19-Task Thomopolous Problems 

Our overall ANOVA results indicated a heuristics effect at a level of 0.0000 for all three 

objective functions for all problem instances.  Analysis of our Tukey’s p-value results across all 

three objective functions is shown in Table 2. The GDA was significantly better than RTR at a 

level of 0.05 for 66 of 84 problem instances and significantly better than TS for 81 problem 

instances.  RTR was significantly better than TS for 69 problem instances and TS was 

significantly better than RTR for 2 problem instances.  These results indicate that for the 19-task 

Thomopolous data set the GDA was the dominant heuristic followed by RTR and then TS.   

Table 2 Tukey’s Test p-Values for 84 Thomopolous Problem Instances 

p = 0.05 ADC MDC SCV Total 

GDA statistically better than RTR 25 16 25 66 

GDA statistically better than TS 28 25 28 81 

RTR statistically better than TS 23 24 22 69 

TS statistically better than RTR 2 0 0 2 

 

In Table 3 we present the average percent reduction from the starting value for each heuristic-

objective function combination for 30 simulations.  These results support our Tukey’s test 

results.  The GDA had the largest overall average percent reduction for all three objective 

functions followed by RTR and then TS.  Note in Table 3 that none of the three heuristics were 

able to reduce problem instances T23-16a and T23-16b for the MDC objective function.  The 

cycle time of 16 seconds caused the U-line to be highly constrained, with no idle time available.     

Insert Table 3 here 

5.1.2  61-Task Kim Problems 

Our overall ANOVA results again indicated a heuristics effect at a level of 0.0000 for all three 

objective functions for all problem instances and our Tukey’s p-value results at a level of 0.05  

are shown in Table 4.  For the Kim problems, the GDA was significantly better than RTR for 66 
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of 72 problem instances and significantly better than TS for 71 problem instances.  RTR was 

significantly better than TS for only 6 problem instances and TS was significantly better than 

RTR for 61 problem instances.  Interestingly, while the GDA was again the dominant heuristic, 

TS was clearly dominant over RTR.    

Table 4 Tukey’s Test p-Values for 72 Kim Problem Instances 

p = 0.05 ADC MDC SCV Total 

GDA statistically better than RTR 24 18 24 66 

GDA statistically better than TS 24 24 23 71 

RTR statistically better than TS 0 6 0 6 

TS statistically better than RTR 24 13 24 61 

 

The average percent reduction from the starting value for the Kim problem instances is shown in 

Table 5.  As for the Thomopolous problem instances, these results also support the conclusions 

from the Tukey’s test.  Again, the GDA had the largest overall average percent reduction for all 

three objective functions, but is now followed by TS and then RTR.  Though the overall MDC 

reductions for TS and RTR were close (24.7% and 21.6% respectively), TS did have a greater 

reduction for 16 of the 24 problems, of which 13 were significant.      

Insert Table 5 Here 

5.1.3  111-Task Arcus Problems 

For the Arcus problem instances ANOVA results indicated a heuristics effect at a level of 0.0000 

for all three objective functions. Table 6 shows Tukey’s p-value results for the Arcus problem 

instances. Once more, the GDA was significantly better than both RTR and TS, while again TS 

was significantly better than RTR.   

Table 6 Tukey’s Test p-Values for 48 Arcus Problem Instances 

p = 0.05 ADC MDC SCV Total 

GDA statistically better than RTR 16 14 16 46 

GDA statistically better than TS 16 10 16 42 

RTR statistically better than TS 0 0 0 0 

TS statistically better than RTR 16 12 16 44 
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In Table 7 we present the average percent reduction from the starting value for the Arcus 

problem instances.  The GDA had the largest overall average percent reduction for all three 

objective functions followed by TS and then RTR.  None of the three heuristics were able to 

reduce problem instances A14-8100a and A14-8100b for the MDC objective function.  We 

cannot explain this anomaly since the initial MDC was 1983 seconds and the theoretical lower 

bound was 28 seconds.  In addition, this U-line had 18 work stations.  As a comparison, problem 

instance A14-9700a&b had a theoretical lower bound of only 14 seconds, a higher initial MDC 

at 2293 and only 15 work stations.   

Insert Table 7 Here 

5.2  Heuristics Comparison Summary 

In sections 5.1.1 to 5.1.3 our answers to research questions 1 and 2 answer our 3
rd

 research 

question “Is there a dominant heuristic for all objective functions minimized?”.  It was clear that 

the GDA dominates both RTR and TS for all three problem sizes and for all three objective 

functions minimized in this study.  Table 8 summarizes our Tukey’s results across all heuristics 

and objective functions and is based on a total of 200 problem instances.  In our analysis we drop 

the four problem instances where none of the three heuristics were able to minimize the initial 

MDC.  Those problems instances being T23-16a&b and A14-8100a&b.  From Table 8 it is clear 

that at a significance level of 0.05, the GDA is significantly better than RTR for 89.0% of the 

problem instances and significantly better than TS for 97.0% of the problem instances.  Our next 

best performer across all three objective functions is TS since it is a better performer than RTR 

for both the ADC and SCV objective functions.  Tabu search performed better than RTR for the 

larger problem sizes of 61 and 111 tasks, while RTR performed better for the smaller 19 task 
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problem set.  Table 8 also summarizes the number of times each heuristic found the minimum 

objective function value for all three heuristics.  The GDA generates the minimum objective 

function value in 196 of 200 problem instances versus 32 and 23 problem instances for RTR and 

TS, respectively.  

Table 8 Tukey’s Test Summary Across Objective Functions (n=200) 

 ADC MDC SCV Total (%) 

Tukey’s Results (p = 0.05)      

GDA statistically better than RTR 65 48 65 178 89.0 

GDA statistically better than TS 68 59 67 194 97.0 

RTR statistically better than TS 23 30 22 75 37.5 

TS statistically better than RTR 42 25 40 107 53.5 

      

*Number of times the heuristic found 

the minimum objective function value. 

     

GDA 67 61 68 196 98.0 

RTR 7 23 2 32 16.0 

TS 5 16 2 23 11.5 
* Percentages do not add up to 100% due to ties. 

6  Conclusions and Future Research 

For our empirical comparison experiment our overall conclusion is that the great deluge 

algorithm (GDA) is clearly the best performing heuristic for all problem sizes and objective 

functions for the M-UALBP.  This statement is supported by the Tukey’s test, average percent 

reductions, and the number of times the GDA found the minimum objective function value. For 

the 19-task Thomopolous problem instances RTR was second best while TS was the second best 

performer for the larger 61-task Kim and 111-task Arcus problem instances.       

 This research makes several contributions to the literature.  To our knowledge this is the first 

implementation of the tabu search, the great deluge algorithm and the record-to-record travel 

algorithm heuristics to solve the M-UALBP.  This is also only the fourth study we are aware of 

that empirically tests a solution for the M-UALBP. Our research has shown that the great deluge 

algorithm is a robust heuristic for solving the M-UALBP.   
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 The assumptions in our study had some limitations.  Travel times for an operator between 

tasks within a workstation were not included in the initial balance.  This is not a critical issue in 

our research since we only allow a single exchange of tasks.  But if multiple tasks can be 

swapped during an exchange then the size of the workstations might change and hence the travel 

time.  The assumption that task locations are not fixed assumes that tasks can easily be 

exchanged between workstations at no cost.  This assumption would hold for the labor intensive 

assembly of items such as hand tools or kitchen countertop home appliances where the 

movement of a task would entail moving the parts bin and the hand-held tools for that task.  A 

second limitation of this study is the use of a random method to exchange tasks for tabu search.  

Tabu search is based on the idea of using an intelligent mechanism to search the solution space 

(Glover and Laguna, 1997) and this research used a probabilistic search procedure.  Some other 

limitations of our study are the use of static objective functions, closed workstations (no 

buffering by workers) and the cost of work-in-process is not accounted for.  

 For the M-UALBP the following future research is proposed.  In conjunction with the either 

tabu search or the great deluge algorithm, utilize an intelligent search mechanism to identify task 

exchanges.  Scholl and Voβ (1996) use a critical station method and Sparling and Miltenburg 

(1998) demonstrate a task time correlation coefficient method.  The objective functions used in 

this research were static.  Future research could simulate the layouts generated by the objective 

functions to determine the efficiency of the line, identify bottlenecks and measure inventory 

levels.  Finally an empirical comparison study of mixed-model serial assembly line layouts and 

U-shaped assembly line layouts could be conducted. 

 For practitioners the implications of these research are that mixed-model U-shaped assembly 

lines can be improved through the use of the heuristics utilized in this study, particularly the 
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easier to implement GDA.  This research also found that the solution is sequence dependent and 

therefore an effort should be made to identify the best sequence.     
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Table 3 Thomopolous Problems: Average Percent Reduction for Objective Function and Heuristic 

ADC MDC SCV Problem 

Instance GDA RTR TS GDA RTR TS GDA RTR TS 

T14-15a 51.7 37.6 35.2 65.0 58.1 39.7 65.1 50.0 44.3 

T14-15b 43.8 30.6 31.0 61.7 51.9 38.6 55.6 40.0 39.3 

T14-17a 48.7 44.2 36.5 62.5 48.1 30.3 96.9 86.5 71.3 

T14-17b 45.7 40.4 32.8 52.4 45.8 26.1 92.5 84.4 68.5 

T14-19a 33.3 27.4 19.4 40.6 41.1 22.2 95.0 78.1 55.2 

T14-19b 34.7 29.4 20.2 39.6 41.9 25.9 92.9 78.8 54.1 

T18-15a 29.2 18.8 23.0 22.1 20.4 5.4 30.5 20.2 21.6 

T18-15b 29.6 13.4 18.1 20.8 16.7 2.9 30.2 11.3 15.7 

T18-17a 42.1 34.7 31.5 33.3 24.4 10.0 85.8 71.2 64.8 

T18-17b 48.5 43.1 37.5 46.1 40.6 27.5 87.1 76.5 61.3 

T18-19a 28.2 20.1 16.8 7.5 8.1 3.5 66.7 53.8 44.1 

T18-19b 20.8 16.2 12.2 6.3 8.3 4.0 48.9 38.1 29.0 

T20-15a 55.3 46.5 34.8 50.0 27.9 13.8 60.4 52.0 39.1 

T20-15b 51.2 40.6 33.1 59.3 39.0 26.0 56.7 45.8 37.7 

T20-17a 52.9 46.7 42.1 51.2 42.7 33.6 95.9 84.9 75.1 

T20-17b 46.5 10.9 32.6 50.9 40.6 32.1 62.2 79.2 64.2 

T20-19a 26.7 18.5 7.5 6.3 6.9 1.9 81.0 59.0 23.1 

T20-19b 22.6 18.3 8.8 6.3 6.3 2.9 67.8 55.1 26.6 

T23-16a 27.0 22.0 20.5 0.0 0.0 0.0 28.6 22.8 20.5 

T23-16b 31.2 24.2 21.1 0.0 0.0 0.0 32.0 22.8 21.0 

T23-18a 59.8 55.2 49.1 44.0 30.0 18.0 93.5 86.5 73.9 

T23-18b 62.2 59.0 54.9 46.3 33.0 18.3 92.8 88.4 82.7 

T23-20a 36.7 34.4 22.1 50.5 47.5 32.3 98.7 95.4 59.5 

T23-20b 44.1 41.4 27.8 51.8 48.4 34.6 98.3 94.8 60.1 

T24-15a 60.3 43.4 27.8 51.3 39.3 8.0 81.3 63.3 44.1 

T24-15b 59.9 47.4 36.1 46.7 35.3 10.3 76.7 63.2 49.3 

T24-17a 40.1 36.9 31.7 27.1 17.5 2.5 95.5 93.2 66.0 

T24-17b 31.2 25.3 21.1 51.8 45.9 37.5 91.1 75.4 63.5 

Avg. Reduction  41.6 33.1 28.0 37.6 30.9 18.1 73.6 63.2 49.1 

Bold indicates best heuristic for an objective function for a problem instance 
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Table 5 Kim Problems: Average Percent Reduction for Objective Function and Heuristic 

ADC MDC SCV Problem 

Instance GDA RTR TS GDA RTR TS GDA RTR TS 

K3-142a 59.9 29.6 53.5 64.5 33.5 45.5 57.9 28.1 52.9 

K3-142b 49.4 16.8 36.4 61.9 34.2 39.0 48.8 17.7 39.0 

K3-170a 31.7 11.3 25.0 11.8 11.8 8.9 68.8 23.9 55.0 

K3-170b 31.8 12.7 23.6 11.6 11.8 9.2 64.4 27.4 49.9 

K3-71a 37.1 0.6 26.1 51.3 21.2 28.3 37.9 1.3 25.7 

K3-71b 37.8 2.3 26.7 47.5 21.3 25.5 38.1 2.1 26.1 

K3-77a 50.6 10.3 37.1 50.2 31.4 24.0 68.4 17.5 49.2 

K3-77b 44.3 7.9 34.3 48.4 29.4 21.9 62.9 11.9 48.3 

K7-147a 46.5 10.4 37.8 43.8 11.8 24.2 46.5 8.5 42.8 

K7-147b 53.3 18.0 45.7 42.3 5.8 21.4 56.2 16.8 44.1 

K7-175a 26.2 7.3 20.8 7.9 8.6 2.0 62.7 17.0 46.8 

K7-175b 25.5 4.9 22.5 7.2 8.4 2.8 63.4 13.2 47.9 

K7-74a 33.1 0.5 23.1 36.1 7.4 24.4 35.9 0.8 24.0 

K7-74b 35.6 0.6 25.3 37.4 11.1 23.8 37.5 0.9 22.3 

K7-78a 50.3 15.3 39.4 54.2 31.1 32.5 68.0 20.1 56.9 

K7-78b 53.3 17.1 45.5 55.0 32.9 34.3 71.1 24.9 58.7 

K33-150a 49.5 16.3 39.7 57.1 31.0 38.5 48.3 14.5 40.1 

K33-150b 42.6 7.7 34.8 50.5 20.1 34.8 42.4 7.2 35.2 

K33-178a 24.2 8.5 19.8 19.3 19.4 6.5 63.2 22.9 51.6 

K33-178b 26.4 7.0 22.3 19.1 19.9 7.4 66.1 21.5 56.6 

K33-75a 43.2 4.2 31.1 51.8 28.6 30.8 43.4 5.4 36.2 

K33-75b 42.9 5.8 33.2 51.3 26.6 31.3 43.1 5.2 35.9 

K33-81a 45.3 13.9 37.3 54.3 30.1 38.0 69.6 17.5 56.7 

K33-81b 50.2 17.6 39.8 54.3 31.6 36.6 73.6 25.1 62.1 

Avg. Reduction 41.3 10.3 32.5 41.2 21.6 24.7 55.8 14.6 44.3 

Bold indicates best heuristic for an objective function for a problem instance 
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Table 7 Arcus Problems: Average Percent Reduction for Objective Function and Heuristic 

ADC MDC SCV Problem 

Instance GDA RTR TS GDA RTR TS GDA RTR TS 

A14-9700a 10.0 0.0 4.9 36.5 0.0 29.4 11.1 0.1 6.1 

A14-9700b 13.3 0.0 7.3 36.3 0.5 25.9 16.2 0.0 7.5 

A14-10300a 9.5 0.0 5.6 75.8 15.3 58.5 77.8 0.0 43.4 

A14-10300b 9.1 0.0 4.6 74.6 12.2 63.3 76.0 0.6 39.9 

A14-8100a 14.4 0.0 9.7 0.0 0.0 0.0 18.7 0.1 8.1 

A14-8100b 17.2 0.2 8.7 0.0 0.0 0.0 22.1 0.0 11.9 

A14-8500a 12.0 0.0 8.8 76.0 15.4 75.3 76.4 0.4 58.5 

A14-8500b 12.1 0.0 8.3 77.9 20.1 74.9 74.3 0.1 53.9 

A22-9800a 16.6 0.2 6.1 18.6 2.1 13.4 31.7 0.0 16.7 

A22-9800b 18.1 0.2 10.8 31.3 0.6 26.8 33.9 0.5 17.5 

A22-10300a 11.1 0.0 5.9 75.8 16.5 71.4 73.2 0.2 35.6 

A22-10300b 11.8 0.0 7.1 74.9 14.3 67.1 73.0 0.0 46.5 

A22-8125a 8.9 0.0 5.1 18.9 0.0 1.8 13.2 0.1 6.3 

A22-8125b 9.0 0.0 4.1 19.8 0.0 1.8 12.7 0.1 5.8 

A22-8550a 36.0 0.1 29.4 77.2 30.3 67.4 89.6 0.2 65.7 

A22-8550b 36.0 0.5 28.3 77.9 28.7 70.9 90.7 0.4 63.0 

Avg. Reduction 15.3 0.1 9.7 48.2 9.8 40.5 49.4 0.2 30.4 

Bold indicates best heuristic for an objective function for a problem instance 
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