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The Introduction of Bootstrapping Techniques for
Finding Confidence Intervals Using Simulation
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The following paper details how the use of simulation can
help to introduce computer intensive applications, namely
bootstrapping, to a first year statistics course. The bootstrap-
ping technique is used in creating confidence intervals for
the mean, median, and variance. These bootstrap confidence
intervals are compared to the traditional confidence intervals

for the purpose of analyzing the accuracy of the bootstrap-
ping technique.

INTRODUCTION

The use of simulation as a teaching technique in a statistics course has
been discussed in previous papers, Olinsky and Schumacher (1990), and
Kennedy, Olinsky, and Schumacher (1990). As observed in these papers,
the hands-on use of a computer and the observation of sampling results
through simulation provide the students with an intuitive understanding of
complicated theoretical results. Simulation may also be used to demon-
strate to students the effectiveness of nontraditional statistical procedures
such as the computer intensive resampling procedures of which the best
known is bootstrapping.

Bootstrapping is a statistical algorithmic procedure that may be used
to calculate confidence interval estimates for unknown population parame-
ters. The theoretical advantage of the bootstrapping method of calculating
confidence intervals is that the population need not be normal.

As Stephen Turner observed in his paper “Elementary Bootstrapping
with Minitab” (1988), the content of elementary statistics courses, particu-
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larly in business schools, is shifting towards computer-assisted data analy-
sis. This shift away from the traditional hypothesis testing procedures al-
lows for the examination of real data sets. The bootstrapping technique,
because it has no model assumptions and is an algorithmic technique, is a
likely addition to any statistics course, especially a data-analysis type
course. The use of the computer and an easy to use statistical package such
as Minitab are essential to the introduction of the bootstrapping algerithm
in an elementary course,

Turner presents the bootstrapping procedure and provides a simple
Minitab program to calculate a bootstrap confidence interval for the popu-
lation mean. The following paper provides an iliustration of the use of
simulation to introduce bootstrapping in a basic statistics course. The sim-
ulation also emphasizes the meaning of traditional confidence intervals
and compares the accuracy of these two techniques for the mean, median,
and variance of a normal distribution. The programs were written in
Minitab in order that they could be carried out with hands-on input from
the students because Minitab is a popular statistics package.

To obtain a bootstrap interval for a population parameter, one starts
with a random sample from the population for which no assumptions need
be made. One then samples with replacement from this sample. Turner
reports that 100 samples is considered adequate for the procedure. The
statistic that is used to estimate the unknown parameter is then calculated
for cach of these 100 samples. The 100 statistics are then sorted and the
appropriate percentiles chosen to obtain the desired interval.

We introduced simulation and bootstrapping in an elementary busi-
ness statistics course and found that these concepts can be easily under-
stood by elementary statistics students. The addition of this topic therefore
enhanced the course by providing a method of calculating confidence in-
tervals that is the same for all parameters, while giving the students a
deeper understanding of the traditional methods.

DESIGN OF THE SIMULATION

The simulation was designed to illustrate the bootstrapping technique
itself and to test and compare the accuracy of a 95% confidence interval
for descriptive statistics, using both bootstrapping techniques and tradi-
tional methods. The entire Minitab program is found in the appendix. To
create the initial random sample, we had to assume a certain distribution,
Because most first-semester statistics courses rely heavily on the normal
distribution, we calculated the 95% confidence intervals for a normal dis-
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tribution with a mean = 0 and a variance = 1, and the program was run for
a small sample size of n = 10 and a sample size of # = 25. The lack of
normality is not a problem for large sample sizes; thercfore, we used sam-
ples with a small size. _

The program first calculates the traditional confidence intervals,
which in itself was interesting to the students, because they could see how
the different confidence intervals for each statistic were found using the
Minitab program. The Minitab command, which can be found in line 9 of
the program, for finding the f-interval of the sample in column C1 is MTB
> TINTERVAL C1. Thus, the confidence interval for the mean, which as-
sumes normality when # < 30, is obtained by a one-line call for a t-interval

" in the Minitab program. The confidence interval for the variance also as-
sumes normality, but the calculation was a bit more complicated.

The formula for the confidence interval of the variance, which is in-
cluded in many elementary texts because it contains the standard normal
scores, is the large sample formula and is appropriate for sample sizes
greater than 30. Because we were interested in smaller samples, we used
the formula that is appropriate for all samples of size » from a normal
population and requires the calculation of values from a chi-square distri-
bution (Freund & Walpole, 1987). This formula for a sample of size » with
a sample variance s? is as follows:

(;z-—l)sz < o< (;1—1)s2
-1, -1, 3

The construction of the 95% confidence interval of the population
variance is outlined in the Adinitadb subroutine VARIANCE.MTR called on
line 15. It involves, for example, the inverse cumulative density function
of the chi-square distribution, %%s-1, .25y, that for a sample of size 10 is

stored in the constant k3 in Minitab by the commands (see lines 18
through 24):

MTB > Let K1 = 025
MTB > Let K2 =9

MTB > INVCDF K1 K3;
SUBC > CHISQUARE K2.

Normality is not an assumption for the traditional confidence interval
of the median. In establishing an interval for the median, a table lookup
was necessary. We used the tables from Inman and Conover whose text,
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Modern Business Statistics (1988), does include an optional section on
calculating exact, small, sample confidence intervals for a population me-
dian. As noted by these authors, the level of confidence is not exactly 95%
because of the discrete nature of the tabulated values. In particular, for
samples of size 10 the actual percentage should be 97.85%, and for n=25
the actual percentage should be 95.67%, which is why the simulation re-

" sults for our traditional 95% confidence intervals for the median did so

well. It becomes obvious to the students how popular confidence intervals
for the mean are because the others are more difficult to obtain. The inter-
val for the mean was quite simple to find by a one-line call, but the other
intervals were less accessible in Minitab,

Of the three intervals created, the only one that did not assume nor-
mality was the interval for the median. Bootstrapping is a technique that
can be used to create a confidence interval for any parameter with no
assumptions. The procedure always remains the same as opposed to the
traditional methods that can vary greatly as we have shown. Bootstrap
samples were created by selecting nambers from an original normal distri-
bution with replacement. One hundred bootstrap samples each of size n =
10 or n =25, depending on the experiment, were created. The mean, medi-
an, and variance were calculated for each of the 100 bootstrap samples.
Those 100 values for each of the 3 statistics were stored in 3 different
columns, and the colamns were sorted. A 95% confidence interval for each
statistic was built by averaging the 2nd and 3rd pieces of data in the sorted
colemn, which would represent the lower bound of the interval and is in
fact the 2.5 percentile, and by averaging the 97th and 98th pieces of data
to represent the upper bound, which is the 97.5 percentile.

IMPLEMENTATION AND RESULTS

Because the student’s background in Minitab was limited, and we did
not want to lose valuable classroom time, we created the Minitab program,
discussed it in class, and gave the program to each student. They in turn
ran the program and returned to class with the data that could then be
compiled together. The student’s job was to run his or her program once
and obtain 6 confidence intervals, We put two classes together so that we
would have 100 groups of data. Thus each student brought back to class 6
confidence intervals. The first 3 would be the confidence intervals of the
mean, median, and variance found by traditionai methods, and the other 3
were those found by using bootstrapping methods. The class counted how
many times out of 100 the given mean, median, and variance fell in the
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intervals for both methods and then calculated the percentages. This Mon-
te Carlo approach clearly illustrated to the class what a statistician means
by establishing a confidence interval for any statistic.

The information was placed in a table so that the results could be
discussed in class. Table 1 shows the percentage of times the calculated
statistic of the population actually fell within the confidence interval for
= 10. The levels of confidence using the traditional method for each of the
three statistics performed accurately; however, in the bootstrapping meth-
od, the levels of confidence were less accurate. In fact the level of confi-
dence for the varjance was only 77%.

When the sample size was increased to n = 25, again the levels of
confidence using the traditional method were as accurate as expected and
are shown in Table 2. The bootstrapping methed did perform better with a
larger sample, but the level of confidence for the variance was still only 92%.

It is interesting to note that a small amount of accuracy may be sacri-
ficed with the bootstrapping technique for the mean, but the variance sac-
rificed too much, especially for very small samples. Because the mean and
the median are considered more stable statistics than the variance, we ex-
pected a loss of accuracy, but we were all surprised to see that the highest
accuracy we attained in the confidence interval was only 92%. The results
were also ploited on histograms using Harvard Graphics™ that nicely in-
dicated that the bootstrapping intervals gave results close to the traditional
methods except for that of the variance,

In fact, only for the small sample of # = 10 was the loss of accuracy
substantial. As an overhead presentation in class, these charts were a good
illustration of the compiled results of all the students.

CONCLUSION

The educational values of this exercise are many. First of all the class
sees concretely what a statistician means by a 95% confidence interval. By
actually counting how many times the mean, median, and variance do fall
within an expected range, a 95% confidence interval means then that only
2 or 3 misses are expected each time the program is run 100 times. Usually
the student is surprised to actually see this fact through simulation,

The concept of bootstrapping is not covered in most first year text-
books, and it is a sampling technique that is not above the educational
expertise of first year students. This simple program teaches the class the
idea of bootstrapping, while illustrating that bootstrapping is not quite as
accurate as traditional methods when working with data that is normal.
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However, it also shows that bootstrapping is not terribly imaccurate, We
also found that by showing them how to construct a bootstrap 95% confi-
dence interval, that is, by constructing appropriate percentiles of sorted
data, the student had a clearer idea of confidence intervals in the sense that
he had a clearer idea of what a statistician means by the spread of data.

Students also learned that obtaining a confidence interval for the me-
dian and the variance in the traditional method was not simple. A table
lookup was necessary for the median, and the chi-square distribution was
needed for the variance,

Table 1
95% Confidence Intervals Containing the Parameter
Sample Size n=10

Traditional Interval Bootstrap Interval
Parameter Proportion Parameter Proportion
Mean 98/100 Mean 96/100
Median " 99/100 Median 941100
Variance 977100 Variance 77100

Table 2

95% Confidence Intervals Containing the Parameter
Sample Size n =25

Traditional Interval Bootstrap Interval
Parameter Proportion Parameter Proportion
Mean 95M00 Mean 894/100
Median 95/100 Median 94/100
Variance 95/100 Variance 92/100

Ore of the strengths of bootstrapping is that the technique of obtaining the
confidence interval remains the same for any parameter and in fact for any
distribution. However, the student must have access to a computer and a statis-
tical package. The program is computer intensive; we can only use the boot-
strapping technique with the aid of 2 computer. This program is a nice applica-

o
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tion of the use of computers in a first year statistics conrse, and theoretically the
students can comprehend the results. Time, of course, is always an issue in any
Class, and every professor feels constricted by time. By giving the student the
program, taking a few moments to discuss the idea of bootstrapping, and hav-
ing the student run the program and return with the tesults, the educational
benefits from the class discussions were well worth the time.

" Percent of Intervals
100

mean median variance
Parameter Estimated

I Traditional Interval Bootstrap Interval

Figure 1. Sample intervals which contain parameter, Sample size n = 10.

\ . _Percent of Intervals
100

mean median variance
Parameter Estimated

W Traditional Interval Bootstrap Interval

Figure 2. Sample intervals which contain parameter. Sample size # = 25.
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APPENDIX

Minitab Prbgram to Produce Confidence Intervals
Sample Sizen=10

CODE

OUTFILE 'Intervals'
- LET K50 =10

LET k60 =2

LETk61=9

EXECUTE 'CI'

CLMTB

NOECHO

OH=0

RANDOM K50 C1

TINTERVAL C1

SORT C1 C600 .
LET C601 (1) =C800 (k60)
LET C601 (2) =C600 (k61)

.. NAME C&01 '"MED-CI'

PRINT C801
EXECUTE 'VARIANCE'

EXECUTE 'CILOOP'

EXPLANATION
Creates output file Intervals.Lis
Sets the sample size

Percentiles used for Median Table
Executes Main Subroutine CLMTW

Command STORE 'CI' creates File

Suppresses commands to screen
Suppresses page prompts
Places a random Normal (0, 1)
sample of size n in Column 1
Prints the traditional mean ClI
Puts Sorted Data in Column 600

Séts up median Cl in Column 601

Prints the traditional median Cl
Calls subroutine for traditional
Variance Cl

Calls subroutine for Bootstrap Cl's
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17. END

VARIANCE.MTB

18. LET K1=.025

18. LET K2=.975

20. LET K51={K50-1)
21. INVCDF K1 K3;
22. CHISQUARE K51.

INVCDF K2 Ké;

CHISQUARE 51.

LET K5 = VARIANGE (C1)
LET C500 (1)= ((K51*K5) /K4)

27. LET C500 (2)= ({(K51*K5) fK3)

28. NAME C500 'VARCI

29. PRINT €500

30. END
CILOOP.MTB

31, Ki1=2

32. EXECUTE 'BOOT 100 Times

33. LETK1=2

34. LET K2=1

35. EXECUTE 'MEAN' 100 Times

36. SORT C200 C200

37. NAME C200 'means’

38. LET C201(1) ={C200(2) +
C200(3))/2

38. LET C201(2) = (C200{97) +
C200(98))2

40. NAME C201 'CI-MEAN'

41. PRINT C201

42, LET K1=2

43. LET K2=1

44, EXECUTE 'VAR' 100 Times

45, SCORT C300 €300

46. NAME C300 'vars'

LET C301(1) = (C300(2) +
€300(3))/2

18 thru 24 put 2,5th percentile of
chi-square with n-1 degrees of
freedom in k3 and 95th in k4

Upper and Lower [imits of the
Traditional Cl for Variance Found

Subroutine Which creates
Bootstrap sample and Cl's

BOOT.MTB creates sample

MEAN.MTB creates mean Cl|

VAR.MTB creates variance Cl

91
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48.

49,
80.
51.
52.
53.

54.
§5.
56.

57.

58.
59.
60.

69.
70.
71.

73.
74.
75.
78,

76.
77,
78,
79.

Kennedy and Schumacher

LET C301(2) = {C300(97) +
C300(98))/2

NAME C301 '"VAR-STD'

PRINT C301

LET K1=2

LET K2=1

EXECUTE 'MEDIAN' 100 MEDIAN.MTB creates median Cl
Times :
SORT C400 C400

NAME C400 'medians’

LET C401(1) = (C400(2) +

C400(3)y2

LET C401 (2) = (C400(97) +
C400(98))r2

NAME C401 'Ci-MED’

PRINT C401

END

BOOT.MTB

SAMPLE K50 C1 CK1:
REPLACE.

LET K1=K1+1

END

- MEAN.MTB

LET €200 (K2) =MEAN(CK1)
LET K1=K1+1

LET K2=K2+1

END

VAR.MTB

LET C300(K2) = VARIANCE(CK1)
LET K1 = K{+1

LET K2 = K2+1

END

... MEDIAN.MTB

80.
&1.
82.
83.

LET CK400(K2) = MEDIAN {Ck1)
LET K1 = K1+1

LET K2 = K2+1

END




