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Model	comparison	is	at	the	heart	of	all	scientific	methodologies.	Progress	is	made	in	
science	by	constructing	many	models	possibly	of	different	complexities,	testing	them	
against	measurements,	and	determining	which	of	them	explain	the	data	the	best.	It	is	my	
observation,	however,	that	in	many	introductory	physics	labs	we	provide	students	with	the	
materials	and	methods	to	verify	the	“correct”	model	of	the	experiment	they	are	performing,	
e.g.	measuring	“𝑔”	or	verifying	the	period	of	a	pendulum.	In	this	way,	we	do	our	students	a	
disservice	and	don’t	allow	them	to	experience	the	richness	and	creativity	that	constitutes	
the	scientific	enterprise.	Limiting	the	lab	to	the	“correct”	model	can	have	its	uses	—	for	
example,	getting	the	students	to	practice	the	proper	methods	to	measure	lengths	and	times	
or	to	support	the	specific	theory	covered	in	the	lecture	portion	of	the	class.	However,	when	
students	perform	these	labs	they	come	to	view	these	activities	as	repetitive	and	
mechanical,	reinforcing	the	notion	that	science	concerns	not	the	true	exploration	of	nature	
but	simply	the	verification	of	what	we	already	know.	By	verifying	what	we	already	know,	
the	laboratory	experience	does	not	improve	overall	understanding1	and	can	mislead	
students	about	the	methods	of	science	overall.	

This	paper	proposes	to	include	model	comparison	—	even	in	the	introductory	physics	lab	
—	to	mimic	the	process	of	research	as	done	by	practicing	scientists,	and	provides	the	
students	with	a	more	enriching	laboratory	experience.	We	do	this	by	making	the	outcome	
unknown	or	uncertain	and	to	stress	model	building	and	comparison.	Some	of	these	steps	
are	described	by	Holmes	and	Bonn2,	in	the	context	of	uncertainty	in	labs,	but	here	we	
extend	it	to	the	entire	laboratory	activity.	In	the	process,	I	introduce	some	elementary	
methods	for	doing	model	comparison	in	introductory	physics	laboratory	settings	which	are	
not	much	more	difficult	than	the	alternatives,	yet	also	expose	students	to	a	richer	
laboratory	experience.	One	of	the	benefits	of	the	methods	proposed	here	is	the	
introduction	of	the	notion	that	increased	model	complexity,	despite	yielding	a	somewhat	
better	fit	to	the	data,	should	not	be	favored	unless	there	is	a	substantial	increase	in	the	
quality	of	the	fit	—	the	complexity	comes	at	a	cost.	By	thinking	in	terms	of	model	
complexity	in	addition	to	the	quality	of	the	fit	we	can	explore	models	of	many	kinds	and	use	
them	to	help	us	design	better	laboratory	experiences	for	the	students.	

Free fall 
A	common	introductory	laboratory	is	the	so-called	“free-fall”	lab,	often	constructed	as	an	
exercise	to	estimate	the	acceleration	due	to	gravity3,	𝑔.	Efforts	are	often	taken	to	reduce	air	
friction,	a	complexity	typically	ignored	in	any	analysis	in	class.	Other	treatments	make	use	
of	air-friction,	but	focus	on	the	time-frame	of	the	terminal	velocity	behavior4	-	simplifying	
the	situation	to	constant	speeds.	As	physicists	we	know	that	these	are	not	the	only	two	
alternatives	and	further,	even	if	they	were	the	only	two	alternatives	we	would	not	want	to	



restrict	ourselves	to	just	one	of	them.	To	pave	the	way	to	a	full	model	comparison	
treatment	the	instructor	can	make	some	simple	adjustments:	don’t	take	efforts	to	reduce	
friction	(perhaps	even	choose	to	increase	it)	and	look	at	the	entire	time-frame.	Specifically,	
in	addition	to	small	metal	balls,	I	am	proposing	instructors	include	balls	of	paper	or	
aluminum	foil,	even	packing	peanuts	and	coffee	filters5	—	the	added	complexity	is	a	benefit.	
By	using	a	variety	of	objects,	it	becomes	unclear	if	the	theory	described	in	class	will	be	
applicable	in	every	case	and	the	students	have	to	explore	multiple	possible	models.	The	
students	can	be	presented	with	models	which	are	approximately	correct,	and	the	students	
can	be	required	to	justify	when	these	approximations	are	useful.	Two	such	models	that	are	
immediately	available	are	the	air-free	model,	where	the	object	falls	at	a	constant	
acceleration	

Model	Air-Free	

𝑦 = 𝑦$ −
1
2𝑔𝑡

) (1)	

and	the	air-dominant	model,	where	the	object	falls	at	a	constant	speed	

Model	Air-Dominant	

𝑦 = 𝑦$ − 𝑣-𝑡	 (2)	

In	order	to	determine	which	model	is	more	correct	we	need	data	at	two	or	more	points	in	
time.	These	measurements	can	be	done	with	video	or	by	hand	with	stopwatches/smart	
phones,	and	may	be	designed	in	a	number	of	ways,	e.g.	time	to	pass	half-way	to	the	floor	
and	to	impact,	many	time	points	taken	on	a	video,	total	time	to	fall	from	several	different	
heights,	etc…	The	particular	experimental	design	does	not	matter	for	this	paper,	but	the	
idea	of	different	model	predictions	should	be	stressed.	Let’s	presume	we	have	the	sample	
data	shown	in	Figure	1of	the	height	of	two	objects	as	they	fall	from	2	meters.	These	kinds	of	
data	can	be	easily	obtained	with	modern	range	finders6	or	the	analysis	of	movie7.	However	
even	data	with	far	less	temporal	resolution	can	be	approached	in	the	fashion	proposed	
here.	



	

Fig	1.	Data	for	two	objects	falling	from	2	meters.	Object	2	is	experiencing	a	stronger	
effect	of	air	friction,	and	can	be	seen	nearing	terminal	velocity	near	the	end	of	the	time	
period.	

We	can	then	use	these	data	to	fit	both	models,	to	obtain	best	estimates	and	uncertainties	
for	the	unknown	parameters,	𝑔	and	𝑣- ,	and	to	compare	which	model	works	best	for	this	
particular	object.	The	analysis	can	be	done	in	Excel8,	Python9,	or	any	other	numerical	curve	
fitting	program.	The	result	is	shown	in	Figure	2.	Although	technically	the	Air-Free	Model	is	
“better”	(i.e.	has	a	lower	MSE	and	thus	is	closer	to	the	data)	one	can	see	even	by	eye	that	
neither	model	is	particularly	good.	Observing	that	both	models	are	not	acceptable	
motivates	us	to	find	a	better	one.	

	

Fig	2.	Fitting	parameters	to	free-fall	models,	air-free	and	air-dominant,	applied	to	data	
from	Object	2.	The	air-free	model	is	clearly	“better”	than	the	air-dominant	model,	but	
also	clearly	falls	short	of	satisfactory	-	even	by	eye.	



When all models fail 
When	faced	with	the	situation	where	all	of	models	do	poorly,	what	do	we	do	as	scientists?	
Sometimes	we	have	to	tentatively	proceed	with	the	best	of	the	poor	alternatives,	as	we	
have	done	historically	in	the	case	of	Newton’s	Law	of	Gravitation	after	Mercury’s	orbit	was	
measured	carefully10.	Sometimes	the	failure	of	models	motivates	us	to	find	an	alternative	
which	we	pursue	now.	While	some	objects	follow	the	air-free	model	and	others	the	air-
dominant	model,	students	may	observe	that	the	rest	seem	to	fall	somewhere	in	between.	
Further,	there	aren’t	any	objects	observed	which	fall	faster	than	the	predictions	of	the	air-
free	model	and	for	many	objects	(like	Object	2	above)	the	latter	part	of	the	trajectory	
appears	to	show	a	constant	speed.	This	might	make	us	propose	a	transition	to	air-dominant	
model	—	or	several	of	them.	A	simple	model	might	be,	

Model	Transition	

𝑦 = /𝑦$ −
1
2𝑔𝑡

) 	for	𝑡 ≤ 𝑡4
𝑦$ − 𝑣-𝑡 	for	𝑡 > 𝑡4

(3)	

where	𝑡4 	is	an,	unknown,	critical	time	for	transitioning	from	one	model	to	another.	Other	
models	have	been	explored5,11	and	may	have	advantages	to	the	one	proposed	here.	To	
reiterate,	it’s	not	the	particular	model	that	is	important	but	the	fact	that	there	are	an	
infinite	number	of	possible	models	of	varying	complexity,	each	with	different	assumptions	
and	limitations.	It’s	also	valuable	to	point	out	to	students	that	we	may	come	up	with	models	
even	when	the	ones	we	have	actually	work	—	that	there	could	be	more	than	one	“correct”	
answer.	

The	process	of	model	creation	is	the	first	step	to	improving	our	understanding	of	the	
system.	One	must	follow	this	with	the	techniques	to	analyze	and	compare	them.	We	often	
stress	the	minimization	of	the	mean-squared	error	(MSE)	as	the	measure	of	the	``goodness	
of	fit’’,	however	with	models	of	varying	complexity	this	measure	needs	to	be	improved.	
This	we	explore	presently.	

Beyond the Mean Squared Error - Enter the BIC 
It	is	a	numerical	fact	that	a	model	with	3	free	parameters	(e.g.	Model	Transition)	will	fit	
better,	i.e.	have	a	lower	mean	squared	error	(MSE),	than	a	subset	of	that	model	but	with	
only	1	free	parameter	(e.g.	Model	Air-Free)	no	matter	what	the	data	(Figure	3).	Because	the	
latter	model	is	a	subset	of	the	former,	we	have	the	freedom	of	two	extra	parameters	in	the	
Transition	model	to	possibly	“improve”	the	overall	fit	(and	possibly	overfit).	



	

Fig	3.	Fitting	parameters	to	free-fall	models,	the	air-free	and	simple	Transition,	
applied	to	data	from	Object	1.	The	fits	nearly	the	same,	with	the	more	complex	model	
achieving	a	smaller	mean	squared	error	(MSE)	due	entirely	to	the	added	freedom	of	
extra	fit	parameters.	

As	scientists,	we	typically	favor	the	simpler	model	all	things	being	equal	—	applying	the	so-
called	Occam’s	Razor12.	However,	we	also	admit	that	we	should	favor	the	more	complex	
model	in	cases	where	it	fits	substantially	better	than	the	simple	one	-	but	how	much	is	
substantial?	One	procedure	used	in	more	advanced	statistics	is	Bayesian	model	
comparison,	or	the	approximation	with	the	Bayesian	Information	Criterion	(BIC)13.	In	this	
procedure,	the	measure	of	the	fit	of	the	model	is	a	combination	of	two	terms	—	one	
including	the	mean	squared	error	(MSE)	and	another	which	measures	the	complexity	of	the	
model.	The	complexity	is	measured	by	the	number	of	fitted	parameters,	denoted	by	𝑘.	The	
mathematical	form	of	BIC	is	simple	enough	to	introduce	in	an	introductory	setting	even	if	a	
full	derivation	is	beyond	such	a	class,	

BIC = 𝑘 ∙ log(𝑁) + 𝑁 ∙ log	(MSE) (4)	

where	𝑁	is	the	number	of	data	points	and	𝑘	is	the	number	of	fitted	parameters.	Notice	that	
since	the	BIC	depends	on	the	Mean	Squared	Error	(MSE),	a	larger	BIC	represents	a	poorer	fit	
to	the	data.	For	models	with	the	same	complexity	(i.e.	equal	𝑘),	comparing	BIC	is	identical	
to	comparing	MSE.	

Applied	to	the	data	above	(Figure	4),	we	can	see	that	the	complex	Transition	model	applied	
to	Object	1,	which	has	a	lower	MSE	and	thus	a	better	``fit’’,	achieves	a	higher	BIC,	however,	
leading	us	to	conclude	that	the	extra	complexity	of	the	model	is	not	justified.	Applied	to	
Object	2	the	added	complexity	is	warranted,	as	seen	in	Table	1.	We	note	that,	when	applied	
to	models	of	the	same	complexity,	using	the	BIC	measure	is	equivalent	to	using	the	MSE	for	
goodness-of-fit.	However,	the	BIC	measure	generalizes	to	models	of	varying	complexity	and	
provides	students	with	a	method	of	model	comparison	in	these	cases.	



	

Fig	4.	Fitting	parameters	to	free-fall	models,	the	air-free	and	simple	Transition,	
applied	to	data	from	Object	1.	The	models	fit	nearly	the	same,	with	the	simpler	model	
achieving	a	smaller	BIC	due	to	penalty	for	the	extra	complexity	of	fit	parameters	in	the	
Transition	model.	

Object	 Model	 MSE	 BIC	

Object	1	 Air-Free	 0.000251	 -245	

	 Air-Dominant	 0.034	 -98.1	

	 Transition	 0.000244	 -239	

Object	3	 Air-Free	 0.00499	 -235	

	 Air-Dominant	 0.0346	 -148	

	 Transition	 0.000221	 -367	

Table	1.	MSE	and	BIC	Results	for	Object	1	(an	object	with	little	air	friction)	and	Object	2	(an	
object	with	more	air	friction)	for	several	models.	Using	MSE	as	the	measure	of	”goodness	of	
fit”	leads	to	nearly	always	favoring	the	more	complex	model.	Using	the	BIC	as	the	measure	
of	”goodness	of	fit”	leads	one	to	favor	the	simpler	model	when	the	added	complexities	are	
not	warranted.	

	

	



	

	

Pennies 
As	another	example	that	is	both	accessible	and	interesting	to	students,	we	look	at	the	
density	of	pennies	across	the	years.	These	data	are	easily	collected	by	students	near	the	
beginning	of	the	semester,	a	sample	shown	in	Figure	5.	There	seems	to	be	at	least	one	
transition	in	these	data,	around	1980,	where	the	density	seems	to	drop.	As	before,	we	
consider	several	models	and	apply	them	to	the	data.	

	

Fig	5.	Density	of	pennies	vs	year.	

	

Model	1:	Constant	

y = constant	 (5)	

Model	2:	Linear	

y = slope ⋅ 𝑡 + intercept (6)	

Model	3:	Single-breakpoint	Constant	

y == PconstantQ 	for	𝑡 ≤ 𝑡4
constant) 	for	𝑡 > 𝑡4

(7)	

	



Calculating	the	MSE	is	straightforward	for	the	constant	models.	The	constant	in	Model	1	is	
just	the	average	of	the	entire	data	set	and	the	piecewise	constants	in	Model	3	are	just	the	
average	values	in	those	time	ranges,	given	the	breakpoint	time,	𝑡4 .	The	MSE	for	the	linear	
model,	as	for	the	examples	above,	is	provided	by	any	software	that	performs	linear	fits.	The	
results	are	shown	in	Figure	6.	For	a	more	elementary	analysis,	one	can	easily	restrict	the	
models	to	piecewise	constant	examples.	

This	is	a	good	time	to	remind	students	about	the	meaning	the	``number	of	parameters’’	
value,	𝑘,	in	the	calculation	for	BIC	(Equation	)	.	In	Model	1,	there	is	only	one	parameter	that	
can	be	fit	or	adjusted	—	the	constant	—	so	𝑘 = 1.	For	the	linear	Model	2	there	are	two	such	
parameters,	so	𝑘 = 2.	The	Single-breakpoint	Constant	Model	3	has	𝑘 = 3	because	each	of	
the	two	constants	needs	to	be	fit,	but	also	the	time	of	the	breakpoint	is	a	third	adjustable	
parameter.	It	can	be	challenging	for	students	to	recognize	the	breakpoint	time	as	an	
adjustable	parameter,	because	our	eye	is	naturally	drawn	to	this	value.	However,	the	
breakpoint	of	𝑡4 = 1980	in	this	data	is	really	the	result	of	finding	the	optimum	𝑡4 	
(i.e.	lowest	MSE	or	equivalently	BIC)	for	the	breakpoint	model	across	all	possible	values	of	
𝑡4 .	

	

Figure	6.	Density	of	pennies	vs	year	with	models	of	different	complexity:	single	
constant	(𝒌 = 𝟏),	linear	(𝒌 = 𝟐),	and	single-breakpoint	constant	(k=3).	Each	case	
improves	both	MSE	and	BIC.	

Matters	get	interesting	when,	once	you	see	a	single	breakpoint	around	1980,	one	might	
start	seeing	other	transitions.	Perhaps	there	is	one	around	1996?	Perhaps	others?	If	we	
introduce	a	double-breakpoint	model,	with	breakpoints	at	𝑡4Q = 1980	and	𝑡4) = 1996,	we	
can	see	(Figure	7)	that	the	extra	complexity	is	unwarranted	even	though	our	eye	may	think	
there	is	a	transition	there.	A	discussion	of	the	idea	that	humans	see	patterns	in	random	
noise	is	good	follow-up	to	this	exercise.	As	a	real	world	example	using	climate	change,	
there	are	several	examples	of	fitting	the	global	temperature	trends	over	the	past	150	years	
using	single	linear	models	and	piecewise-linear	models	with	different	numbers	of	
breakpoints14.	The	criticism	of	the	piecewise	models	is	not	that	there	are	no	transitions,	but	
that	the	extra	complexity	introduced	in	the	presumed	transitions	are	not	warranted	
without	a	correspondingly	large	decrease	in	MSE.	



	

Figure	7.	Density	of	pennies	vs	year	with	two	piecewise	models	of	different	complexity:	
single-breakpoint	constant	(𝒌 = 𝟑)	and	double-breakpoint	constant	(𝒌 = 𝟒).	Although	
the	double-breakpoint	model	improves	the	fit	(i.e.	MSE	is	lower)	it	is	not	as	favorable	as	
the	single-breakpoint	model	(i.e.	BIC	is	higher)	due	to	its	extra	complexity.	

Further applications 
One	can	generate	a	rich	variety	of	examples	once	one	introduces	the	notion	of	model	
comparison	in	introduction	physics	classes.	The	simple	pendulum	lab,	for	example,	is	
typically	presented	to	students	to	verify	the	relationship	between	the	period	of	the	
pendulum	and	the	length	of	the	pendulum	for	small	oscillations,	

Small	Angle	

𝑇 = \
𝐿
𝑔

(8)	

Here,	we	can	easily	extend	our	comparison	to	the	messier,	large	angle	solution	or	one	of	its	
approximations15,16,	

Large	Angle	

𝑇 = \
𝐿
𝑔 ^1 +

1
16𝜃$

) +
11
3072𝜃$

` + ⋯b (9)	

One	could	potentially	introduce	forms	including	the	decay	of	the	oscillation	or	any	other	
interesting	variations.	Some	of	the	questions	which	the	students	could	answer	using	the	
model	comparison	techniques	include,	



• When	is	it	appropriate	to	use	the	Small	Angle	model	over	the	Large	Angle	model?	
• How	carefully	need	one	measure	the	period	and	angle	to	distinguish	three	terms	in	the	

Large	Angle	model	over	two	terms?	
• If	you	don’t,	or	somehow	can’t,	measure	the	initial	angle	𝜃$	can	you	use	it	as	a	free	

parameter	in	the	model	comparison?	

One	can	even	introduce	the	model	pendulum	to	explain	walking	speeds.	For	example,	each	
leg	can	be	seen	as	a	pendulum	during	the	swing	phase	of	a	normal	walking	step.	How	
complex	of	a	model	is	needed	to	understand	the	speed	of	walking	quantitatively?	Is	a	
simple	pendulum	enough	(i.e.	we	approximate	the	mass	in	the	center	of	the	leg)?	Is	a	
uniform	solid	pendulum	a	justified	complexity?	Is	a	two-part	solid	pendulum	a	further	
justified	complexity?	

This	process	of	asking	questions	is	more	aligned	with	the	way	that	scientists	work	in	
practice,	is	intrinsically	more	interesting	to	students,	and	provides	a	uniform	framework	
for	approaching	all	physics	problems.	Following	this	approach	students	are	presented	with	
some	of	the	central	points	in	all	scientific	endeavors:	

1. All	models	are	wrong	
2. Some	models	are	good	enough	and	that’s	what	we	work	with	(for	now)	
3. The	generation	of	models	is	a	fundamentally	creative	human	enterprise	

Discussion and Conclusions 
I	have	used	this	approach	in	a	freshman	physics	lab,	where	to	some	students	I	have	had	to	
describe	what	mean-squared	error	is	and	when	the	last	time	they	saw	logarithms	would	
have	been	Algebra	II	in	high	school.	I’ll	admit,	the	calculation	might	appear	a	bit	like	a	
“blackbox”	to	these	particular	students,	but	in	my	experience	it	doesn’t	detract	much	from	
the	application	of	the	process,	if	one	describes	the	process	in	stages:	

1. MSE	is	a	measure	of	the	difference	from	the	model	to	the	data	-	larger	MSE	=	larger	
difference	

2. one	term	in	the	BIC	is	directly	related	to	MSE	(i.e.	higher	MSE	=	higher	BIC)	so	it	can	be	
used	in	comparing	differences	between	two	models	and	the	data	in	the	same	way	

3. the	other	term	in	the	BIC	is	a	penalty	for	a	model	having	adjustable	parameters	and	
thus	being	more	complex	

Neither	the	derivation	of	BIC,	nor	any	advanced	statistics,	nor	the	detailed	properties	of	
logarithms	are	required	to	understand	these	stages	and	thus	use	the	approach.	

I	have	also	used	this	approach	in	advanced	freshman	and	sophomore	physics	labs.	At	first,	
the	students	find	it	a	bit	unusual	—	they	haven’t	seen	this	approach	even	in	their	math	
classes.	However,	after	doing	it	several	times	across	the	semester	they	become	much	more	
comfortable	with	it,	especially	with	the	idea	of	the	complexity	of	different	models.	

Model	comparison	is	the	bread-and-butter	of	working	scientists,	yet	it	isn’t	stressed	in	
introductory	physics	labs.	Here	we	have	presented	some	straight-forward	examples,	



extending	traditional	physics	lab	exercises	to	include	the	process	of	model	comparison.	I	
believe	this	approach	makes	these	lab	exercises	both	more	interesting	for	the	students	and	
a	better	reflection	of	the	core	processes	of	science,	without	unduly	complicating	the	
analysis.	The	examples	presented	here	can	be	modified	to	be	as	simple	or	as	challenging	for	
the	needs	of	any	particular	class.	The	essential	idea	of	this	approach	can	be	applied	to	
nearly	any	lab	activity,	and	generate	an	entire	family	of	new	and	interesting	student	
experiences.	The	original	intention	of	this	approach	was	to	restrict	it	to	only	mathematical	
models	—	the	BIC	is	a	mathematical	equation	after	all.	However,	the	idea	is	much	broader	
—	those	models	with	more	adjustable	parameters	or	pieces	need	to	justify	those	
parameters	by	fitting	the	data	even	better	than	models	without	those	parameters.	
Philosophers	have	been	using	Occam’s	Razor	for	centuries	but	the	approach	here	brings	it	
into	the	introductory	physics	laboratory.	
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