Document Type


First Faculty Advisor

Gao Niu

Second Faculty Advisor

Rock Gorvett


actuary; analytics; life insurance; HRS; purchase behavior


Bryant University

Rights Management

CC Attribution-NonCommercial-NoDerivatives 4.0 International


Life insurance is an important need for many people in the United States. It is an insurance that the purchaser will never get to receive the benefit, instead, upon death, their beneficiaries will receive it to supplement their income. This study will be analyzing the Health and Retirement Study dataset in order to identify and model the variables that are most related and/or correlated to the purchasing behavior of life insurance in the United States. Using different mathematical applications, such as linear modeling through R and correlations through Excel, the data has been scanned thoroughly to isolate potential significant variables. There is a lot of literature on life insurance itself and the purchasing behavior of life insurance, however, there is limited literature using the Health and Retirement Study dataset. Therefore, this is an opportunity to make new findings on this topic. The key findings show that there were seven variables, such as age and education level, that most correlated and related to the purchasing behavior of life insurance. Based on these findings, this study will provide some recommendations that can help life insurance companies better understand their market and utilize the findings accordingly.

Included in

Mathematics Commons