Document Type

Article

Keywords

physicists; educational assessment; laboratories; mathematical modeling; history and philosophy of science; lectures; newtonian mechanics; statistical models; educational aids; programming languages

Identifier Data

https://doi.org/10.1119/1.5145420

Publisher

AIP Publishing

Publication Source

The Physics Teacher, 58(3)

Abstract

Model comparison is at the heart of all scientific methodologies. Progress is made in science by constructing many models (possibly of different complexities), testing them against measurements, and determining which of them explain the data the best. It is my observation, however, that in many introductory physics labs we provide students with the materials and methods to verify the “correct” model of the experiment they are performing, e.g. measuring “g” or verifying the period of a pendulum. In this way, we do our students a disservice and don’t allow them to experience the richness and creativity that constitutes the scientific enterprise. Limiting the lab to the “correct” model can have its uses—for example, getting the students to practice the proper methods to measure lengths and times or to support the specific theory covered in the lecture portion of the class. However, when students perform these labs, they come to view these activities as repetitive and mechanical, reinforcing the notion that science concerns not the true exploration of nature but simply the verification of what we already know. By verifying what we already know, the laboratory experience does not improve overall understanding and can mislead students about the methods of science overall.

Share

COinS